Skip to main content

Clinical Safety and Applications of Stem Cell Gene Therapy

  • Chapter
  • First Online:
Safety, Ethics and Regulations

Abstract

Gene therapy is an exciting new field that has the potential to contribute to the treatment of many incurable diseases. Ensuring safety and efficacy are key objectives. Here we review the latest developments in gene therapy vectors, the stem cell transduction techniques, and the therapeutic applications under investigation. The development of stem cell gene therapies is complex and requires optimization of many diverse elements. Local and international consortia will facilitate the entry of these technologies into the clinic through the sharing of knowledge and provision of guidance and support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiuti A, Roncarolo MG (2009) Ten years of gene therapy for primary immune deficiencies. Hematology 23:682–689

    Google Scholar 

  • Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C, Dionisio F et al (2013) Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science (New York, NY) 341(6148):1233151

    Article  CAS  Google Scholar 

  • Akram KM, Samad S, Spiteri M, Forsyth NR (2012) Mesenchymal stem cell therapy and lung diseases. Adv Biochem Eng Biotechnol 130:105–129. doi:10.1007/10_2012_140

    Google Scholar 

  • Amado RG, Mitsuyasu RT, Rosenblatt JD, Ngok FK, Bakker A, Cole S, Chorn N et al (2004) Anti-human immunodeficiency virus hematopoietic progenitor cell-delivered ribozyme in a phase I study: myeloid and lymphoid reconstitution in human immunodeficiency virus type-1—infected patients. Hum Gene Ther 262:251–262

    Article  CAS  Google Scholar 

  • American Cancer Society (2014) Clinical trials: what you need to know, pp 1–37

    Google Scholar 

  • Baban CK, Cronin M, O’Hanlon D, O’Sullivan GC, Tangney M (2010) Bacteria as vectors for gene therapy of cancer. Bioeng Bugs 1(6):385–394. doi:10.4161/bbug.1.6.13146

    Article  PubMed  PubMed Central  Google Scholar 

  • Baoutina A, Alexander IE, Rasko JEJ, Emslie KR (2007) Potential use of gene transfer in athletic performance enhancement. Am Soc Gene Ther 15(10):1751–1766. doi:10.1038/sj.mt.6300278

    Article  CAS  Google Scholar 

  • Bauer BG, Valdez P, Kearns K, Bahner I, Wen SF, Zaia JA, Kohn DB (1997) Inhibition of human immunodeficiency virus-1 (HIV-1) replication after transduction of granulocyte colony-stimulating factor—mobilized CD34+ cells from HIV-1—infected donors using retroviral vectors containing anti—HIV-1 genes, 1. Blood 89(7):2259–2267

    CAS  PubMed  Google Scholar 

  • Baum C (2008) Insertional mutagenesis in gene therapy and stem cell biology. Curr Opin Hematol 14:337–342

    Article  Google Scholar 

  • Biffi A, Capotondo A, Fasano S, Carro U, Marchesini S, Azuma H, Malaguti MC et al (2006) Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. J Clin Invest 116(11):3070–3082. doi:10.1172/JCI28873.3070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T, Baldoli C et al (2013) Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science (New York, NY) 341(6148):1233158. doi:10.1126/science.1233158

    Article  CAS  Google Scholar 

  • Blumenthal M, Skelton D, Pepper KA, Jahn T, Methangkool E, Kohn DB (2007) Effective suicide gene therapy for leukemia in a model of insertional oncogenesis in mice. Mol Ther 15(1):183–192. doi:10.1038/sj.mt.6300015

    Article  CAS  PubMed  Google Scholar 

  • Bobis-Wozowicz S, Galla M, Alzubi J, Kuehle J, Baum C, Schambach A, Cathomen T (2014) Non-integrating gamma-retroviral vectors as a versatile tool for transient zinc-finger nuclease delivery. Sci Rep 4:4656. doi:10.1038/srep04656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bollinger L, Stover J (1999) The economic impact of AIDS in South Africa. The Policy Project. 1–16

    Google Scholar 

  • Bosse R, Singhofger-Wohra M, Rosenthal F, Schulz G (1997) Good manufacturing practice production of human stem cells for somatic cell and gene therapy. Stem Cells 15(Suppl 1):275–280

    Article  PubMed  Google Scholar 

  • Bouard D, Alazard-Dany D, Cosset F-L (2009) Viral vectors: from virology to transgene expression. Br J Pharmacol 157(2):153–165. doi:10.1038/bjp.2008.349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulad F, Wang X, Qu J, Taylor C, Ferro L, Karponi G, Bartido S et al (2014) Safe mobilization of CD34+ cells in adults with β-thalassemia and validation of effective globin gene transfer for clinical investigation. Blood 123(10):1483–1486. doi:10.1182/blood-2013-06-507178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brehm MA, Racki WJ, Leif J, Burzenski L, Hosur V, Wetmore A, Gott B et al (2015) Engraftment of human HSCs in nonirradiated newborn NOD-scid IL2rγ null mice is enhanced by transgenic expression of membrane-bound human SCF. Blood 119(12):2778–2789. doi:10.1182/blood-2011-05-353243.The

    Article  CAS  Google Scholar 

  • Buckley RH (2004) Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu Rev Immunol 22(2):625–655. doi:10.1146/annurev.immunol.22.012703.104614

    Article  CAS  PubMed  Google Scholar 

  • Bunnell B, Morgan R (1998) Gene therapy for infectious diseases. Clin Microbiol Rev 11(1):42–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burnett JC, Zaia JA, Rossi JJ (2012) Creating genetic resistance to HIV. Curr Opin Immunol 24(5):625–632. doi:10.1016/j.coi.2012.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Candotti F, Shaw KL, Muul L, Carbonaro D, Sokolic R, Choi C, Schurman SH et al (2012) Gene therapy for adenosine deaminase—deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans plenary paper Gene therapy for adenosine deaminase—deficient severe combined immune deficiency: clinical. Blood 120:3635–3646. doi:10.1182/blood-2012-02-400937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capotondo A, Cesani M, Pepe S, Fasano S, Gregori S, Tononi L, Venneri MA et al (2007) Safety of arylsulfatase a overexpression for gene therapy of metachromatic leukodystrophy. Hum Gene Ther 18(9):821–836. doi:10.1089/hum.2007.048

    Article  CAS  PubMed  Google Scholar 

  • Carcinoma H (2011) Selective targeting of genetically engineered mesenchymal stem cells to tumor stroma microenvironments using tissue-specific suicide gene expression suppresses growth of hepatocellular carcinoma. Ann Surg 254(5):767–775. doi:10.1097/SLA.0b013e3182368c4f

    Article  Google Scholar 

  • Cavazzana-Calvo M, Hacein-bey S, De Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F et al (2000) Gene therapy of human severe combined immunodeficiency SCID—X1 disease. Science 288:669–672. doi:10.1126/science.288.5466.669

    Article  CAS  PubMed  Google Scholar 

  • Cavazzana-Calvo M, Payen E, Negre O, Wang G, Cavallesco R, Gillet-legrand B, Caccavelli L (2010) Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 467(7313):318–322. doi:10.1038/nature09328.Transfusion

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamberlain JR, Schwarze U, Wang P, Hirata RK, Hankenson KD, Pace JM, Underwood RA et al (2004) Gene targeting in stem cells osteogenesis imperfecta. Science 303:1198–1202

    Article  CAS  PubMed  Google Scholar 

  • Check E (2002) A tragic setback. Nature 420:116–118

    Article  CAS  PubMed  Google Scholar 

  • Choudhery MS, Badowski M, Muise A, Harris DT (2013) Comparison of human mesenchymal stem cells derived from adipose and cord tissue. Cytotherapy 15(3):330–343. doi:10.1016/j.jcyt.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  • Ciurea SO, Andersson BS (2009) Busulfan in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 15(5):523–536. doi:10.1016/j.bbmt.2008.12.489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science (New York, NY) 339(6121):819–823. doi:10.1126/science.1231143

    Article  CAS  Google Scholar 

  • Copland IB, Jolicoeur EM, Gillis M, Cuerquis J, Eliopoulos N, Annabi B, Calderone A et al (2008) Coupling erythropoietin secretion to mesenchymal stromal cells enhances their regenerative properties. Cardiovasc Res 79:405–415. doi:10.1093/cvr/cvn090

    Article  CAS  PubMed  Google Scholar 

  • Corrigan-curay J, Cohen-haguenauer O, Reilly O, Ross SR, Fan H, Rosenberg N, King N et al (2009) Challenges in vector and trial design using retroviral vectors for long-term gene correction in hematopoietic. Mol Ther 20(6):1084–1094. doi:10.1038/mt.2012.93

    Article  CAS  Google Scholar 

  • Cucchiarini M, Madry H, Ma C, Thurn T, Zurakowski D, Menger MD, Kohn D et al (2005) Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2. Mol Ther 12(2):229–238. doi:10.1016/j.ymthe.2005.03.012

  • Czechovicz A, Kraft D, Weissman I, Bhattacharya D (2008) Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science 318(5854):1296–1299. doi:10.1126/science.1149726.Efficient

    Article  CAS  Google Scholar 

  • De Rosa L, Carulli S, Cocchiarella F, Quaglino D, Enzo E, Franchini E, Giannetti A et al (2014) Long-term stability and safety of transgenic cultured epidermal stem cells in gene therapy of junctional epidermolysis bullosa. Stem cell Rep 2(1):1–8. doi:10.1016/j.stemcr.2013.11.001

    Article  CAS  Google Scholar 

  • Di W, Mellerio JE, Bernadis C, Harper J, Abdul-wahab A, Ghani S, Chan L et al (2013) Phase I study protocol for ex vivo lentiviral gene therapy for the inherited skin disease, netherton syndrome. Hum Gene Ther Clin Dev 190:182–190. doi:10.1089/humc.2013.195

  • DiGiusto DL, Krishnan A, Li L, Li H, Li S, Rao A, Mi S et al (2010) RNA-based gene therapy for hiv with lentiviral vector—modified CD34+ cells in patients undergoing transplantation for aids-related lymphoma. Gene 43:1–8. doi:10.1126/scitranslmed.3000931

    Google Scholar 

  • Doering CB, Archer D, Spencer HT (2011) Delivery of nucleic acid therapeutics by genetically engineered hematopoietic stem cells. Adv Drug Deliv Rev 62(12):1204–1212. doi:10.1016/j.addr.2010.09.005.Delivery

    Article  CAS  Google Scholar 

  • Ely A, Naidoo T, Mufamadi S, Crowther C, Arbuthnot P (2008) Expressed anti-HBV primary MicroRNA shuttles inhibit viral replication efficiently. Mol Ther 16(6):1105–1112. doi:10.1038/mt.2008.82

    Article  CAS  PubMed  Google Scholar 

  • European Medicines Agency (2008) Guideline on the non-clinical studies required before first clinical use of gene therapy medicinal products. Eur Med Agency (November), EMEA/CHMP/GTWP/125459/2006:1–10

    Google Scholar 

  • European Medicines Agency (2009) Guideline on clinical follow-up gene therapy. Eur Med Agency (October), EMEA/CHMP/GTWP/60436/2007: 1–12

    Google Scholar 

  • Ferrua F, Brigida I, Aiuti A (2010) Update on gene therapy for adenosine deaminase-deficient severe combined immunodeficiency. Curr Opin Allergy Clin Immunol 10(6):32833. doi:10.1097/ACI.0b013e32833fea85.Update

    Article  CAS  Google Scholar 

  • Fink JK, Correll PH, Perry LK, Brady R, Karlsson S (1990) Correction of glucocerebrosidase deficiency after retroviral-mediated gene transfer into hematopoietic progenitor cells from patients with Gaucher disease. Proc Natl Acad Sci U S A 87:2334–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M (2010) 20 years of gene therapy for SCID. Nat Immunol 11(6):457–460. doi:10.1038/ni0610-457

    Article  CAS  PubMed  Google Scholar 

  • Fossett E, Khan WS (2012) Optimising human mesenchymal stem cell numbers for clinical application: a literature review. Stem Cells Int 2012:465259. doi:10.1155/2012/465259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galis ZS, Black JB, Skarlatos SI (2015) Therapeutic approaches. Circ Res 112:1212–1219. doi:10.1161/CIRCRESAHA.113.301100

    Article  CAS  Google Scholar 

  • Giancola R, Bonfini T, Iacone A (2012) Cell therapy: cGMP facilities and manufacturing. Muscles Ligaments Tendons J 2(3):243–247

    PubMed  PubMed Central  Google Scholar 

  • Giry-laterrière M, Verhoeyen E, Salmon P (2011) Lentiviral vectors. In: Merten O-W, Al-Rubeai M (eds) Viral vectors for gene therapy: methods and protocols, vol 737. Springer, New York, pp 183–209. doi:10.1007/978-1-61779-095-9

    Chapter  Google Scholar 

  • Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103(11):1204–1219. doi:10.1161/CIRCRESAHA.108.176826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould DJ, Favorov P (2003) Vectors for the treatment of autoimmune disease. Gene Ther 10(10):912–927. doi:10.1038/sj.gt.3302018

    Article  CAS  PubMed  Google Scholar 

  • GTWP (2008) Guideline on the non-clinical studies required before first clinical use of gene therapy medicinal products. Eur Med Agency (November), EMEA/CHMP/GTWP/125459/2006: 1–10

    Google Scholar 

  • Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay J-P, Thrasher AJ et al (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346(16):1185–1193

    Google Scholar 

  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science (New York, NY) 302(5644):415–419. doi:10.1126/science.1088547

    Article  CAS  Google Scholar 

  • Hacein-bey-abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, Clappier E et al (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118(9):3132–3142. doi:10.1172/JCI35700.3132

  • Hacein-Bey-Abina S, Hauer J, Lim A, Picard C, Wang GP, Berry CC, Martinache C et al (2011) Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 363(4):355–364. doi:10.1056/NEJMoa1000164.Efficacy

    Article  Google Scholar 

  • Hadaczek P, Eberling JL, Pivirotto P, Bringas J, Forsayeth J, Bankiewicz KS (2010) Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC. Mol Ther 18(8):1458–1461. doi:10.1038/mt.2010.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris DT (2014) Stem cell banking for regenerative and personalized medicine. Biomedicine 2:50–79. doi:10.3390/biomedicines2010050

    Article  Google Scholar 

  • Horn PA, Thomasson BM, Wood BL, Andrews RG, Morris JC, Kiem H (2015) Distinct hematopoietic stem/progenitor cell populations are responsible for repopulating NOD/SCID mice compared with nonhuman primates. Am Soc Hematol 102(13):4329–4336. doi:10.1182/blood-2003-01-0082.Supported

    Google Scholar 

  • Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Watanabe T, Akashi K et al (2014) Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chain null mice. Blood 106(5):1565–1573. doi:10.1182/blood-2005-02-0516

    Article  CAS  Google Scholar 

  • Jackson CS, Pepper MS (2013) Opportunities and barriers to establishing a cell therapy programme in South Africa. Stem Cell Res Ther 4:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnston J, Denning G, Doering CB, Spencer HT (2013) Generation of an optimized lentiviral vector encoding a high expression factor VIII transgene for gene therapy of hemophilia A. Gene Ther 20:607–615. doi:10.1038/gt.2012.76

    Article  CAS  PubMed  Google Scholar 

  • Kang E, De Witte M, Malech H, Morgan RA, Phang S, Carter C, Leitman SF et al (2002) Nonmyeloablative conditioning followed by transplantation of genetically modified HLA-matched peripheral blood progenitor cells for hematologic malignancies in patients with acquired immunodeficiency syndrome. Blood 99(2):698–701

    Article  CAS  PubMed  Google Scholar 

  • Kang EM, Choi U, Theobald N, Linton G, Priel DAL, Kuhns D, Malech HL (2010) Retrovirus gene therapy for X-linked chronic granulomatous disease can achieve stable long-term correction of oxidase activity in peripheral blood neutrophils. Gene Ther 115(4):783–791. doi:10.1182/blood-2009-05-222760.The

    CAS  Google Scholar 

  • Kazuki Y, Hiratsuka M, Takiguchi M, Osaki M, Kajitani N, Hoshiya H, Hiramatsu K et al (2010) Complete genetic correction of ips cells from Duchenne muscular dystrophy. Mol Ther 18(2):386–393. doi:10.1038/mt.2009.274

    Article  CAS  PubMed  Google Scholar 

  • Kean TJ, Lin P, Caplan AI, Dennis JE (2013) MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int 2013:1–13

    Article  CAS  Google Scholar 

  • Kiem H-P, Jerome KR, Deeks SG, Joseph MM (2012) Hematopoietic stem cell-based gene therapy for HIV disease. Cell Stem Cell 10(2):137–147. doi:10.1016/j.stem.2011.12.015.Hematopoietic

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohn BDB, Bauer G, Rice CR, Rothschild JC, Carbonaro DA, Valdez P, Hao Q et al (1999) A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34+ cells from the bone marrow of human immunodeficiency virus-1–infected children. Blood 94(1):368–371

    CAS  PubMed  Google Scholar 

  • Kuramoto K, Follman D, Hematti P, Sellers S, Laukkanen MO, Seggewiss R, Metzger ME et al (2004) The impact of low-dose busulfan on clonal dynamics in nonhuman primates. Gene Ther 104(5):1273–1280. doi:10.1182/blood-2003-08-2935.Reprints

    CAS  Google Scholar 

  • Kutner RH, Zhang X-Y, Reiser J (2009) Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 4(4):495–505. doi:10.1038/nprot.2009.22

    Article  CAS  PubMed  Google Scholar 

  • Lewis CM, Suzuki M (2014) Therapeutic applications of mesenchymal stem cells for amyotrophic lateral sclerosis. Stem Cell Res Ther 5(2):32

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu JM, Kim S, Read EJ, Futaki M, Dokal I, Carter CS, Leitman F et al (1999) Engraftment of hematopoietic progenitor cells transduced with the Fanconi anemia group C gene (FANCC). Hum Gene Ther 10(14):2337–2346. doi:10.1089/10430349950016988.Published

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Hangoc G, Campbell TB, Goodman M, Tao W, Pollok K, Srour EF et al (2009) Identification of parameters required for efficient lentiviral vector transduction and engraftment of human cord blood CD34+ SCID repopulating cells NOD. Exp Hematol 36(8):947–956. doi:10.1016/j.exphem.2008.06.005.Identification

    Article  CAS  Google Scholar 

  • Logan AC, Lutzko C, Kohn DB (2002) Advances in lentiviral vector design for gene-modification of hematopoietic stem cells. Curr Opin Biotechnol 13(5):429–436

    Article  CAS  PubMed  Google Scholar 

  • Martı J, Arriero MM, Garcı J, Alemany R, Cascallo M, Madero L, Ramı M (2010) Treatment of metastatic neuroblastoma with systemic oncolytic virotherapy delivered by autologous mesenchymal stem cells: an exploratory study. Cancer Gene Ther 17:476–483. doi:10.1038/cgt.2010.4

    Article  CAS  Google Scholar 

  • Martinez-Quintanilla J, Bhere D, Heidari P, He D, Mahmood U, Shah K (2013) Therapeutic efficacy and fate of bimodal engineered stem cells in malignant brain tumors. Stem Cells 31:1706–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mátrai J, Chuah MKL, Vandendriessche T (2009) Recent advances in lentiviral vector development and applications. Mol Ther 18(3):477–490. doi:10.1038/mt.2009.319

    Article  CAS  Google Scholar 

  • Mautino MR, Keiser N, Morgan RA (2001) Inhibition of human immunodeficiency virus type 1 (HIV-1) replication by HIV-1-based lentivirus vectors expressing transdominant rev. J Virol 75(8):3590–3599. doi:10.1128/JVI.75.8.3590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mavilio F (2012) Gene therapies need new development models. Nature 490:7

    Article  CAS  PubMed  Google Scholar 

  • Mitsuyasu RT, Merigan TC, Carr A, Zack JA, Mark A, Workman C, Bloch M et al (2009) Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med 15(3):285–292. doi:10.1038/nm.1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohit E, Rafati S (2013) Biological delivery approaches for gene therapy: strategies to potentiate efficacy and enhance specificity. Mol Immunol 56(4):599–611. doi:10.1016/j.molimm.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  • Molas M, Bermudez J, Bartrons R, Perales JC (2003) Receptor-mediated gene transfer vectors: progress towards genetic pharmaceuticals. Curr Gene Ther 3:468–485

    Article  CAS  PubMed  Google Scholar 

  • Momparler RL, Momparler LF, Galipeau J (2002) Human cytidine deaminase as an ex vivo drug selectable marker in gene-modified primary bone marrow stromal cells. Gene Ther 9(7):452–462. doi:10.1038/sj/gt/3301675

  • Mullen CA, Snitzer K, Culver KW, Morgan RA, Anderson WF, Blaese RM (1996) Molecular analysis of T lymphocyte-directed gene therapy for adenosine deaminase deficiency: long-term in vivo of genes introduced with a retroviral expression vector. Human Gene Ther 7(9):1123–1129

    Google Scholar 

  • Müller LUW, Milsom MD, Kim M, Schambach A, Schuesler T, Williams DA (2008) Rapid lentiviral transduction preserves the engraftment potential of Fanca −/− hematopoietic stem cells. Am Soc Gene Ther 16(6):1154–1160. doi:10.1038/mt.2008.67

    Article  CAS  Google Scholar 

  • Myburgh R, Ivic S, Pepper MS, Gers-Huber G, Li D, Audigé A, Rochat M-A et al (2015) Lentivector knock-down of CCR5 in hematopoietic stem cells confers functional and persistent HIV-1 resistance in humanized mice. J Virol 89(13):1–13. doi:10.1128/JVI.00277-15

  • Myers TJ, Granero-molto F, Longobardi L, Li T, Yan Y, Spagnoli A (2011) Mesenchymal stem cells at the intersection of cell and gene therapy. Exp Opin Biol Ther 10(12):1663–1679. doi:10.1517/14712598.2010.531257.Mesenchymal

    Article  CAS  Google Scholar 

  • Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 9(13):263–267

    Article  Google Scholar 

  • Narsinh KH, Wu JC, Wu CJC (2009) Gene correction in human embryonic and induced pluripotent stem cells: promises and challenges ahead. Mol Ther 18(6):1061–1063. doi:10.1038/mt.2010.92

    Article  CAS  Google Scholar 

  • Neff T, Shotkoski F, Stamatoyannopoulos G (1997) Stem cell gene therapy, position effects and chromatin insulators. Stem Cells 15(Suppl 1):265–271

    CAS  PubMed  Google Scholar 

  • Niess H, Von Einem JC, Thomas MN, Michl M, Angele MK, Huss R, Günther C et al (2015) Treatment of advanced gastrointestinal tumors with genetically modified autologous mesenchymal stromal cells (TREAT-ME1): study protocol of a phase I/II clinical trial. BMC Cancer 15(237):1–13. doi:10.1186/s12885-015-1241-x

    CAS  Google Scholar 

  • OCTGT (2013) Guidance for industry preclinical assessment of investigational cellular and gene therapy products, pp 1–30

    Google Scholar 

  • Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U, Glimm H et al (2006) Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 12(4):401–409. doi:10.1038/nm1393

    Article  CAS  PubMed  Google Scholar 

  • Papadakis ED, Nicklin SA, Baker AH, White SJ (2004) Promoters and control elements: designing expression cassettes for gene therapy. Curr Gene Ther 40:89–113

    Article  Google Scholar 

  • Reiser J, Zhang X, Hemenway CS, Mondal D, Russa VFL (2006) Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Exp Opin Biol Ther 5(12):1571–1584

    Article  Google Scholar 

  • Romero Z, Urbinati F, Geiger S, Cooper AR, Wherley J, Kaufman ML, Hollis RP et al (2013) β-globin gene transfer to human bone marrow for sickle cell disease. J Clin Investig 123(8):3317–3330. doi:10.1172/JCI67930DS1

    Article  CAS  PubMed Central  Google Scholar 

  • Rossi JJ (2000) Ribozyme therapy for HIV infection. Adv Drug Deliv Rev 44:71–78

    Article  CAS  PubMed  Google Scholar 

  • Rossi JJ (2009) NIH public access. Hum Gene Ther 19(4):313–317. doi:10.1089/hum.2008.026.Expression

    Article  CAS  Google Scholar 

  • Sanchez AR, Silberstein LE (2013) Strategies for more rapid translation of cellular therapies for children: a US perspective. Pediatrics 132(2):351–358. doi:10.1542/peds.2012-3383

    Article  PubMed  PubMed Central  Google Scholar 

  • Scaramuzza S, Biasco L, Ripamonti A, Castiello MC, Loperfido M, Draghici E, Hernandez RJ et al (2009) Preclinical safety and efficacy of human CD34+ cells transduced with lentiviral vector for the treatment of Wiskott-Aldrich syndrome. Mol Ther 21(1):175–184. doi:10.1038/mt.2012.23

    Article  CAS  Google Scholar 

  • Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110(9):3507–3512. doi:10.1073/pnas.1222878110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seow Y, Wood MJ (2009) Biological gene delivery vehicles: beyond viral vectors. Mol Ther 17(5):767–777. doi:10.1038/mt.2009.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shujia J, Haider HK, Idris NM, Lu G, Ashraf M (2008) Stable therapeutic effects of mesenchymal stem cell-based multiple gene delivery for cardiac repair. Cardiovasc Res 77(3):525–533. doi:10.1093/cvr/cvm077

    Article  CAS  PubMed  Google Scholar 

  • Shultz LD, Brehm MA, Garcia JV, Greiner DL (2013) Humanized mice for immune system investigation: progress, promise and challenges. Nature reviews. Immunology 12(11):786–798. doi:10.1038/nri3311.Humanized

    Google Scholar 

  • Sidransky E, LaMarca M, Ginns E (2007) Therapy for Gaucher disease: don’t stop thinking about tomorrow. Mol Genet Metab 90:122–125

    Article  CAS  PubMed  Google Scholar 

  • Singh, M., Singh, P., Gaudray, G., Musumeci, L., Thielen, C., Vaira, D., Vandergeeten, C., et al. (2012). An improved protocol for efficient engraftment in NOD/LTSZ-SCIDIL-2Rc NULL mice allows HIV replication and development of anti-HIV immune responses, 7(6): e38491. doi:10.1371/journal.pone.0038491

  • Soares C, Cookson C, Beardsley S (2005) The future of stem cells. Sci Am July:1–34

    Google Scholar 

  • Song S, Chang W, Song B, Song H, Lim S, Him H, Cha M et al (2009) Integrin-linked kinase is required in hypoxic mesenchymal stem cells for strengthening cell adhesion to ischemic myocardium. Stem Cells 27:1358–1365. doi:10.1002/stem.47

    Article  CAS  PubMed  Google Scholar 

  • Spencer HT, Denning G, Gautney RE, Dropulic B, Roy AJ, Baranyi L, Gangadharan B et al (2009) Lentiviral vector platform for production of bioengineered recombinant coagulation factor VIII. Mol Ther 19(2):302–309. doi:10.1038/mt.2010.239

    Article  CAS  Google Scholar 

  • Stein S, Ott MG, Schultze-strasser S, Jauch A, Burwinkel B, Kinner A, Schmidt M et al (2010) Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med 16(2):198–205. doi:10.1038/nm.2088

    Article  CAS  PubMed  Google Scholar 

  • Taylor P, Kunert R, Casanova E (2013) Recent advances in recombinant protein production. Bioengineered 4(4):258–261. doi:10.4161/bioe.24060

    Article  Google Scholar 

  • Throm RE, Ouma AA, Zhou S, Chandrasekaran A, Lockey T, Greene M, De Ravin SS et al (2009) Efficient construction of producer cell lines for a SIN lentiviral vector for SCID-X1 gene therapy by concatemeric array transfection. Gene Ther 113(21):5104–5110. doi:10.1182/blood-2008-11-191049.The

    CAS  Google Scholar 

  • Tiscornia G, Singer O, Verma IM (2007) Development of lentiviral vectors expressing siRNA. Spring, (pol III), 23–34

    Google Scholar 

  • Tremblay J, Xiao X, Aartsma-Rus A, Carlos Barbas A, Blau HM, Bogdanove AJ, Boycott K, Braun S, Breakefield XO, Bueren JA (2013) Translating the genomics revolution: the need for an international gene therapy consortium for monogenic diseases. Mol Ther 21(2):266–268. doi:10.1038/mt.2013.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treschow A, Unger C, Aints A, Felldin U, Aschan J, Dilber MS (2007) OuaSelect, a novel ouabain-resistant human marker gene that allows efficient cell selection within 48 h. Gene Ther 14:1564–1572. doi:10.1038/sj.gt.3303015

    Article  CAS  PubMed  Google Scholar 

  • Tsubokawa T, Yagi K, Nakanishi C, Zuka M, Nohara A, Ino H, Fujino N et al (2010) Impact of anti-apoptotic and anti-oxidative effects of bone marrow mesenchymal stem cells with transient overexpression of heme oxygenase-1 on myocardial ischemia. Am J Physiol Heart Circ Physiol 298:1320–1329. doi:10.1152/ajpheart.01330.2008

    Article  CAS  Google Scholar 

  • Tsuruta T (2013) Recent advances in hematopoietic stem cell gene therapy. INTECH: February: 1–30

    Google Scholar 

  • U.S. Congress (1988). Mapping our genes—genome projects: how big? How fast? April 1988. Office of Technology Assessment, (April)

    Google Scholar 

  • Ugarte F, Forsberg EC (2013) Haematopoietic stem cell niches: new insights inspire new questions. EMBO J 32(19):2535–2547. doi:10.1038/emboj.2013.201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Griensven J, De Clercq E, Debyser Z (2005) Hematopoietic stem cell-based gene therapy against HIV infection: promises and caveats. AIDS Rev 7:44–55

    PubMed  Google Scholar 

  • Vattemi E, Claudio PP (2009) Head & neck oncology cancer. Head Neck Oncol 6:1–6. doi:10.1186/1758-3284-1-3

    Google Scholar 

  • Vollweiler JL, Zielske SP, Reese JS, Gerson SL (2003) Mini review hematopoietic stem cell gene therapy: progress toward therapeutic targets. Bone Marrow Transplant 37:1–7. doi:10.1038/sj.bmt.1704081

    Article  CAS  Google Scholar 

  • Von Kalle C, Baum C, Williams DA (2004) Lenti in red: progress in gene therapy for human hemoglobinopathies. J Clin Investig 7:889–891. doi:10.1172/JCI200423132.severe

    Article  CAS  Google Scholar 

  • Walsh BCE, Grompe M, Vanin E, Buchwald M, Young NS, Nienhuis AW, Liu JM (1994) Functionally active retrovirus vector for gene therapy in Fanconi anemia group C. Blood 84(2):453–459

    CAS  PubMed  Google Scholar 

  • Watts K, Adair J, Kiem H (2012) Hematopoietic stem cell expansion and gene therapy. Cytotherapy 13(10):1164–1171. doi:10.3109/14653249.2011.620748.Hematopoietic

    Article  CAS  Google Scholar 

  • Weissman IL, Shizuru JA (2008) The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 112(9):3543–3553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yannaki E, Papayannopoulou T, Jonlin E, Zervou F, Karponi G, Xagorari A, Becker P et al (2012) Hematopoietic stem cell mobilization for gene therapy of adult patients with severe β-thalassemia: results of clinical trials using G-CSF or plerixafor in splenectomized and nonsplenectomized subjects. Mol Ther 20(1):230–238. doi:10.1038/mt.2011.195

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Wang X, Nyberg SL (2014) Potential and challenges of induced pluripotent stem cells in liver diseases treatment. J Clin Med 3:997–1017. doi:10.3390/jcm3030997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaia JA, Forman SJ (2013) Transplantation in HIV-infected subjects: is cure possible? HIV Hematol 2013:389–393. doi:10.1182/asheducation-2013.1.389

    Article  Google Scholar 

  • Zhan H, Gilmour K, Chan L, Farzaneh F, Mcnicol AM, Xu J, Adams S et al (2013) Production and first-in-man use of T cells engineered to express a HSVTK-CD34 sort-suicide gene. PLoS One 8(10):1–9. doi:10.1371/journal.pone.0077106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Pepper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jackson, C.S., Alessandrini, M., Pepper, M.S. (2017). Clinical Safety and Applications of Stem Cell Gene Therapy. In: Pham, P., Rosemann, A. (eds) Safety, Ethics and Regulations. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-59165-0_3

Download citation

Publish with us

Policies and ethics