Skip to main content

Induced Pluripotent Stem Cell Therapy and Safety Concerns in Age-Related Chronic Neurodegenerative Diseases

  • Chapter
  • First Online:
Book cover Safety, Ethics and Regulations

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

  • 679 Accesses

Abstract

Neurodegenerative diseases primarily affect neurons and have heavy burden on patients, caregivers, and the economy. The number of affected individuals has significantly increased in the past decade, and it is estimated that this number will increase threefold by 2050. The available treatment options are directed toward easing the symptoms. The discovery of stem cells has expanded our understanding of developmental biology and provided us with new opportunities to treat incurable diseases. Nevertheless, stem cell technology is not perfect and has ethical and biological limitations. Induced pluripotent stem cells (iPSCs) provide us with opportunity to overcome these problems. iPSCs may also serve as new therapeutic tools and accelerate the research on etiopathogenesis of neurodegenerative diseases. In this chapter, we aim to summarize the current knowledge of these diseases and describe current and future iPSC technology and clinical application and safety of iPSCs as therapeutic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6-OHDA:

6-Hydroxydopamine

AD:

Alzheimer’s disease

AKT:

RAC-alpha serine/threonine-protein kinase

APOE:

Apolipoprotein E

APP:

Amyloid precursor protein

BBB:

Blood-brain barrier

BiP:

Binding immunoglobulin protein

BSI:

β-secretase inhibitor

ChAT:

Choline acetyltransferase

c-Myc:

Cytoplasmic Myc protein

CNS:

Central nervous system

CNV:

Copy number variation

Crispr/Cas9:

Clustered regularly interspaced short palindromic repeat/CAS9 RNA-guided nucleases

DHA:

Docosahexaenoic acid

DJ-1:

PARK7

ECM:

Extracellular matrix

ER:

Endoplasmic reticulum

ES:

Embryonic stem cells

FAD:

Familial form of Alzheimer’s disease

FDA:

Food and Drug Administration

GABA:

Gamma-aminobutyric acid

G-CSF:

Granulocyte colony-stimulating factor

GSK-3:

Activated glycogen synthase kinase 3

GSK-3:

Glycogen synthase kinase 3

GWAS:

Genome-wide associated studies

hES:

Human embryonic stem cells

hiPSCs:

Human-induced pluripotent stem cells

HLA:

Human leukocyte antigen

HUVEC:

Human umbilical vein endothelial cells

IFN-γ:

Interferon gamma

IKBKAP:

Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase complex-associated protein

iNSC:

Induced neural stem cells

iPSC:

Induced pluripotent stem cells

Klf4:

Kruppel-like factor 4

LRRK2:

Leucine-rich repeat kinase 2

LV:

Lentivirus

MAO:

Monoamine oxidase

MEFs:

Mouse embryonic fibroblasts

MMP:

Mitochondrial membrane permeabilization

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

mtDNA:

Mitochondrial DNA

NaB:

Sodium butyrate

NAB2:

N-aryl benzimidazole

NHP:

Nonhuman primate

NMDA:

N-methyl-d-aspartate

NOS:

Nitric acid synthase

NPC:

Neural progenitor cells

Nrf2:

Nuclear factor (erythroid-derived 2)-like 2

NTFs:

Neurofibrillary tangles

Oct3/4:

Octamer 3/4

PCR:

Polymerase chain reaction

PD:

Parkinson’s disease

PDAPP:

Promoter-driven amyloid precursor protein

PDGF:

Platelet-derived growth factor

PINK1:

PTEN-induced putative kinase 1

PLG:

Polylactide-co-glycolide

PSEN1:

Presenilin 1

PSEN2:

Presenilin 2

ROS:

Reactive oxygen species

SAD:

Sporadic form of Alzheimer’s disease

SNCA:

Synuclein, Alpha

Sox2:

SRY-box containing gene 2

TALEN:

Transcription activator-like effector nucleases

VEGF:

Vascular endothelial growth factor

VPA:

Valproic acid

VPS35:

Vacuolar protein sorting-associated protein 35

VSV-G:

Vesicular stomatitis virus G

ZFN:

Zinc finger nucleases

References

  • Aboud AA, Tidball AM, Kumar KK, Neely MD, Ess KC, Erikson KM, Bowman AB (2012) Genetic risk for Parkinson’s disease correlates with alterations in neuronal manganese sensitivity between two human subjects. Neurotoxicology 33(6):1443–1449. doi:10.1016/j.neuro.2012.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alzheimer’s Association (2015) 2015 Alzheimer’s disease facts and figures. Alzheimers Dement 11(3):332–384. doi:10.1016/j.jalz.2015.02.003

    Article  Google Scholar 

  • Amamoto R, Arlotta P (2013) Reshaping the brain: direct lineage conversion in the nervous system. F1000Prime Rep 5:33. doi:10.12703/P5-33

    Article  PubMed  PubMed Central  Google Scholar 

  • Badger JL, Cordero-Llana O, Hartfield EM, Wade-Martins R (2014) Parkinson’s disease in a dish—using stem cells as a molecular tool. Neuropharmacology 76(Pt A):88–96. doi:10.1016/j.neuropharm.2013.08.035

    Article  CAS  PubMed  Google Scholar 

  • Bartels AL, Leenders KL (2009) Parkinson’s disease: the syndrome, the pathogenesis and pathophysiology. Cortex 45(8):915–921. doi:10.1016/j.cortex.2008.11.010

    Article  PubMed  Google Scholar 

  • Beauchamp P, Moritz W, Kelm JM, Ullrich ND, Agarkova I, Anson BD, Suter TM, Zuppinger C (2015) Development and characterization of a scaffold-free 3D spheroid model of induced pluripotent stem cell-derived human cardiomyocytes. Tissue Eng Part C Methods. doi:10.1089/ten.TEC.2014.0376

  • Beitz JM (2014) Parkinson’s disease: a review. Front Biosci 6:65–74

    Google Scholar 

  • Berk C, Sabbagh MN (2013) Successes and failures for drugs in late-stage development for Alzheimer’s disease. Drugs Aging 30(10):783–792. doi:10.1007/s40266-013-0108-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonifati V (2014) Genetics of Parkinson’s disease—state of the art, 2013. Parkinsonism Relat Disord 20(Suppl 1):S23–S28. doi:10.1016/S1353-8020(13)70009-9

    Article  PubMed  Google Scholar 

  • Byers B, Cord B, Nguyen HN, Schule B, Fenno L, Lee PC, Deisseroth K, Langston JW, Pera RR, Palmer TD (2011) SNCA triplication Parkinson’s patient’s iPSC-derived DA neurons accumulate alpha-synuclein and are susceptible to oxidative stress. PLoS One 6(11):e26159. doi:10.1371/journal.pone.0026159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai J, Yang M, Poremsky E, Kidd S, Schneider JS, Iacovitti L (2010) Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats. Stem Cells Dev 19(7):1017–1023. doi:10.1089/scd.2009.0319

    Article  CAS  PubMed  Google Scholar 

  • Capitanio JP, Emborg ME (2008) Contributions of non-human primates to neuroscience research. Lancet 371(9618):1126–1135. doi:10.1016/S0140-6736(08)60489-4

    Article  PubMed  Google Scholar 

  • Chang YL, Chen SJ, Kao CL, Hung SC, Ding DC, Yu CC, Chen YJ, Ku HH, Lin CP, Lee KH, Chen YC, Wang JJ, Hsu CC, Chen LK, Li HY, Chiou SH (2012) Docosahexaenoic acid promotes dopaminergic differentiation in induced pluripotent stem cells and inhibits teratoma formation in rats with Parkinson-like pathology. Cell Transplant 21(1):313–332. doi:10.3727/096368911X580572

    Article  PubMed  Google Scholar 

  • Choi SM, Kim Y, Shim JS, Park JT, Wang RH, Leach SD, Liu JO, Deng C, Ye Z, Jang YY (2013) Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology 57(6):2458–2468. doi:10.1002/hep.26237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung CY, Khurana V, Auluck PK, Tardiff DF, Mazzulli JR, Soldner F, Baru V, Lou Y, Freyzon Y, Cho S, Mungenast AE, Muffat J, Mitalipova M, Pluth MD, Jui NT, Schule B, Lippard SJ, Tsai LH, Krainc D, Buchwald SL, Jaenisch R, Lindquist S (2013) Identification and rescue of alpha-synuclein toxicity in Parkinson patient-derived neurons. Science 342(6161):983–987. doi:10.1126/science.1245296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper O, Seo H, Andrabi S, Guardia-Laguarta C, Graziotto J, Sundberg M, McLean JR, Carrillo-Reid L, Xie Z, Osborn T, Hargus G, Deleidi M, Lawson T, Bogetofte H, Perez-Torres E, Clark L, Moskowitz C, Mazzulli J, Chen L, Volpicelli-Daley L, Romero N, Jiang H, Uitti RJ, Huang Z, Opala G, Scarffe LA, Dawson VL, Klein C, Feng J, Ross OA, Trojanowski JQ, Lee VM, Marder K, Surmeier DJ, Wszolek ZK, Przedborski S, Krainc D, Dawson TM, Isacson O (2012) Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci Transl Med 4(141):141ra190. doi:10.1126/scitranslmed.3003985

    Article  CAS  Google Scholar 

  • Davie CA (2008) A review of Parkinson’s disease. Br Med Bull 86:109–127. doi:10.1093/bmb/ldn013

    Article  CAS  PubMed  Google Scholar 

  • de Almeida PE, Meyer EH, Kooreman NG, Diecke S, Dey D, Sanchez-Freire V, Hu S, Ebert A, Odegaard J, Mordwinkin NM, Brouwer TP, Lo D, Montoro DT, Longaker MT, Negrin RS, Wu JC (2014) Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance. Nat Commun 5:3903. doi:10.1038/ncomms4903

    PubMed  PubMed Central  Google Scholar 

  • de Lazaro I, Yilmazer A, Kostarelos K (2014) Induced pluripotent stem (iPS) cells: a new source for cell-based therapeutics? J Control Release 185:37–44. doi:10.1016/j.jconrel.2014.04.011

    Article  PubMed  CAS  Google Scholar 

  • De-Paula VJ, Radanovic M, Diniz BS, Forlenza OV (2012) Alzheimer’s disease. Subcell Biochem 65:329–352. doi:10.1007/978-94-007-5416-4_14

    Article  CAS  PubMed  Google Scholar 

  • Devine MJ, Ryten M, Vodicka P, Thomson AJ, Burdon T, Houlden H, Cavaleri F, Nagano M, Drummond NJ, Taanman JW, Schapira AH, Gwinn K, Hardy J, Lewis PA, Kunath T (2011) Parkinson’s disease induced pluripotent stem cells with triplication of the alpha-synuclein locus. Nat Commun 2:440. doi:10.1038/ncomms1453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doege CA, Abeliovich A (2014) Dementia in a dish. Biol Psychiatry 75(7):558–564. doi:10.1016/j.biopsych.2014.01.007

    Article  CAS  PubMed  Google Scholar 

  • Doi D, Samata B, Katsukawa M, Kikuchi T, Morizane A, Ono Y, Sekiguchi K, Nakagawa M, Parmar M, Takahashi J (2014) Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Reports 2(3):337–350. doi:10.1016/j.stemcr.2014.01.013

  • Duan L, Bhattacharyya BJ, Belmadani A, Pan L, Miller RJ, Kessler JA (2014) Stem cell derived basal forebrain cholinergic neurons from Alzheimer’s disease patients are more susceptible to cell death. Mol Neurodegener 9:3. doi:10.1186/1750-1326-9-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Durnaoglu S, Genc S, Genc K (2011) Patient-specific pluripotent stem cells in neurological diseases. Stem Cells Int 2011:212487. doi:10.4061/2011/212487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dye BR, Hill DR, Ferguson MA, Tsai YH, Nagy MS, Dyal R, Wells JM, Mayhew CN, Nattiv R, Klein OD, White ES, Deutsch GH, Spence JR (2015) In vitro generation of human pluripotent stem cell derived lung organoids. Elife 4. doi:10.7554/eLife.05098

  • Emborg ME, Liu Y, Xi J, Zhang X, Yin Y, Lu J, Joers V, Swanson C, Holden JE, Zhang SC (2013) Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain. Cell Rep 3(3):646–650. doi:10.1016/j.celrep.2013.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eslamboli A, Romero-Ramos M, Burger C, Bjorklund T, Muzyczka N, Mandel RJ, Baker H, Ridley RM, Kirik D (2007) Long-term consequences of human alpha-synuclein overexpression in the primate ventral midbrain. Brain 130(Pt 3):799–815. doi:10.1093/brain/awl382

    Article  PubMed  Google Scholar 

  • Flierl A, Oliveira LM, Falomir-Lockhart LJ, Mak SK, Hesley J, Soldner F, Arndt-Jovin DJ, Jaenisch R, Langston JW, Jovin TM, Schule B (2014) Higher vulnerability and stress sensitivity of neuronal precursor cells carrying an alpha-synuclein gene triplication. PLoS One 9(11):e112413. doi:10.1371/journal.pone.0112413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujiwara N, Shimizu J, Takai K, Arimitsu N, Saito A, Kono T, Umehara T, Ueda Y, Wakisaka S, Suzuki T, Suzuki N (2013) Restoration of spatial memory dysfunction of human APP transgenic mice by transplantation of neuronal precursors derived from human iPS cells. Neurosci Lett 557(Pt B):129–134

    Article  CAS  PubMed  Google Scholar 

  • Giri S, Bader A (2015) A low-cost, high-quality new drug discovery process using patient-derived induced pluripotent stem cells. Drug Discov Today 20(1):37–49. doi:10.1016/j.drudis.2014.10.011

    Article  PubMed  Google Scholar 

  • Gupta RM, Musunuru K (2014) Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest 124(10):4154–4161. doi:10.1172/JCI72992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haile Y, Nakhaei-Nejad M, Boakye PA, Baker G, Smith PA, Murray AG, Giuliani F, Jahroudi N (2015) Reprogramming of HUVECs into induced pluripotent stem cells (HiPSCs), generation and characterization of HiPSC-derived neurons and astrocytes. PLoS One 10(3):e0119617. doi:10.1371/journal.pone.0119617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318(5858):1920–1923. doi:10.1126/science.1152092

    Article  CAS  PubMed  Google Scholar 

  • Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, Yow A, Soldner F, Hockemeyer D, Hallett PJ, Osborn T, Jaenisch R, Isacson O (2010) Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci U S A 107(36):15921–15926. doi:10.1073/pnas.1010209107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkes CM (1995) Diagnosis and treatment of Parkinson’s disease. Anosmia is a common finding. BMJ 310(6995):1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heilker R, Traub S, Reinhardt P, Scholer HR, Sterneckert J (2014) iPS cell derived neuronal cells for drug discovery. Trends Pharmacol Sci 35(10):510–519. doi:10.1016/j.tips.2014.07.003

    Article  CAS  PubMed  Google Scholar 

  • Heinrich C, Spagnoli FM, Berninger B (2015) In vivo reprogramming for tissue repair. Nat Cell Biol 17(3):204–211. doi:10.1038/ncb3108

    Article  PubMed  CAS  Google Scholar 

  • Heins N, Malatesta P, Cecconi F, Nakafuku M, Tucker KL, Hack MA, Chapouton P, Barde YA, Gotz M (2002) Glial cells generate neurons: the role of the transcription factor Pax6. Nat Neurosci 5(4):308–315. doi:10.1038/nn828

    Article  CAS  PubMed  Google Scholar 

  • Hendrie HC, Ogunniyi A, Hall KS, Baiyewu O, Unverzagt FW, Gureje O, Gao S, Evans RM, Ogunseyinde AO, Adeyinka AO, Musick B, Hui SL (2001) Incidence of dementia and Alzheimer disease in 2 communities: Yoruba residing in Ibadan, Nigeria, and African Americans residing in Indianapolis, Indiana. JAMA 285(6):739–747

    Article  CAS  PubMed  Google Scholar 

  • Hossini AM, Megges M, Prigione A, Lichtner B, Toliat MR, Wruck W, Schroter F, Nuernberg P, Kroll H, Makrantonaki E, Zoubouliss CC, Adjaye J (2015) Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer’s disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics 16:84. doi:10.1186/s12864-015-1262-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341(6146):651–654. doi:10.1126/science.1239278

    Article  CAS  PubMed  Google Scholar 

  • Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, Zhang SC (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A 107(9):4335–4340. doi:10.1073/pnas.0910012107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu K (2014) All roads lead to induced pluripotent stem cells: the technologies of iPSC generation. Stem Cells Dev 23(12):1285–1300. doi:10.1089/scd.2013.0620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55(3):181–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hy LX, Keller DM (2000) Prevalence of AD among whites: a summary by levels of severity. Neurology 55(2):198–204. doi:10.1212/wnl.55.2.198

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi Y, Okada Y, Akamatsu W, Koike M, Kuzumaki N, Hayakawa H, Nihira T, Kobayashi T, Ohyama M, Sato S, Takanashi M, Funayama M, Hirayama A, Soga T, Hishiki T, Suematsu M, Yagi T, Ito D, Kosakai A, Hayashi K, Shouji M, Nakanishi A, Suzuki N, Mizuno Y, Mizushima N, Amagai M, Uchiyama Y, Mochizuki H, Hattori N, Okano H (2012) Mitochondrial dysfunction associated with increased oxidative stress and alpha-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. Mol Brain 5:35. doi:10.1186/1756-6606-5-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS, Carson CT, Laurent LC, Marsala M, Gage FH, Remes AM, Koo EH, Goldstein LS (2012) Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482(7384):216–220. doi:10.1038/nature10821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia W, Chen W, Kang J (2013) The functions of microRNAs and long non-coding RNAs in embryonic and induced pluripotent stem cells. Genomics Proteomics Bioinformatics 11(5):275–283. doi:10.1016/j.gpb.2013.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Ren Y, Yuen EY, Zhong P, Ghaedi M, Hu Z, Azabdaftari G, Nakaso K, Yan Z, Feng J (2012) Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. Nat Commun 3:668. doi:10.1038/ncomms1669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jindal H, Bhatt B, Sk S, Singh Malik J (2014) Alzheimer disease immunotherapeutics: then and now. Hum Vaccin Immunother 10(9):2741–2743. doi:10.4161/21645515.2014.970959

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19(4):489–501. doi:10.1101/gad.1248505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai H, Yamashita T, Ohta Y, Deguchi K, Nagotani S, Zhang X, Ikeda Y, Matsuura T, Abe K (2010) Tridermal tumorigenesis of induced pluripotent stem cells transplanted in ischemic brain. J Cereb Blood Flow Metab 30(8):1487–1493. doi:10.1038/jcbfm.2010.32

    Article  PubMed  PubMed Central  Google Scholar 

  • Kikuchi T, Morizane A, Doi D, Onoe H, Hayashi T, Kawasaki T, Saiki H, Miyamoto S, Takahashi J (2011) Survival of human induced pluripotent stem cell-derived midbrain dopaminergic neurons in the brain of a primate model of Parkinson’s disease. J Parkinsons Dis 1(4):395–412. doi:10.3233/JPD-2011-11070

    CAS  PubMed  Google Scholar 

  • Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arauzo-Bravo MJ, Ruau D, Han DW, Zenke M, Scholer HR (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454(7204):646–650. doi:10.1038/nature07061

    Article  CAS  PubMed  Google Scholar 

  • Ko HC, Gelb BD (2014) Concise review: drug discovery in the age of the induced pluripotent stem cell. Stem Cells Transl Med 3(4):500–509. doi:10.5966/sctm.2013-0162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch P, Tamboli IY, Mertens J, Wunderlich P, Ladewig J, Stuber K, Esselmann H, Wiltfang J, Brustle O, Walter J (2012) Presenilin-1 L166P mutant human pluripotent stem cell-derived neurons exhibit partial loss of gamma-secretase activity in endogenous amyloid-beta generation. Am J Pathol 180(6):2404–2416. doi:10.1016/j.ajpath.2012.02.012

    Article  CAS  PubMed  Google Scholar 

  • Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26(19):3124–3130. doi:10.1002/adma.201305506

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, Imamura K, Egawa N, Yahata N, Okita K, Takahashi K, Asaka I, Aoi T, Watanabe A, Watanabe K, Kadoya C, Nakano R, Watanabe D, Maruyama K, Hori O, Hibino S, Choshi T, Nakahata T, Hioki H, Kaneko T, Naitoh M, Yoshikawa K, Yamawaki S, Suzuki S, Hata R, Ueno S, Seki T, Kobayashi K, Toda T, Murakami K, Irie K, Klein WL, Mori H, Asada T, Takahashi R, Iwata N, Yamanaka S, Inoue H (2013) Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Abeta and differential drug responsiveness. Cell Stem Cell 12(4):487–496. doi:10.1016/j.stem.2013.01.009

    Article  CAS  PubMed  Google Scholar 

  • Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379. doi:10.1038/nature12517

    Article  CAS  PubMed  Google Scholar 

  • Lee G, Ramirez CN, Kim H, Zeltner N, Liu B, Radu C, Bhinder B, Kim YJ, Choi IY, Mukherjee-Clavin B, Djaballah H, Studer L (2012a) Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nat Biotechnol 30(12):1244–1248. doi:10.1038/nbt.2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Dawson VL, Dawson TM (2012b) Animal models of Parkinson’s disease: vertebrate genetics. Cold Spring Harb Perspect Med 2(10) doi:10.1101/cshperspect.a009324

  • Li X, Zhang P, Wei C, Zhang Y (2014) Generation of pluripotent stem cells via protein transduction. Int J Dev Biol 58(1):21–27. doi:10.1387/ijdb.140007XL

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Feng L, Zhang GX, Ma CG (2015) Intranasal delivery of stem cells as therapy for central nervous system disease. Exp Mol Pathol 98(2):145–151. doi:10.1016/j.yexmp.2015.01.016

    Article  CAS  PubMed  Google Scholar 

  • Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471(7336):68–73. doi:10.1038/nature09798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu GH, Qu J, Suzuki K, Nivet E, Li M, Montserrat N, Yi F, Xu X, Ruiz S, Zhang W, Wagner U, Kim A, Ren B, Li Y, Goebl A, Kim J, Soligalla RD, Dubova I, Thompson J, Yates J 3rd, Esteban CR, Sancho-Martinez I, Izpisua Belmonte JC (2012) Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature 491(7425):603–607. doi:10.1038/nature11557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Waltz S, Woodruff G, Ouyang J, Israel MA, Herrera C, Sarsoza F, Tanzi RE, Koo EH, Ringman JM, Goldstein LS, Wagner SL, Yuan SH (2014) Effect of potent gamma-secretase modulator in human neurons derived from multiple presenilin 1-induced pluripotent stem cell mutant carriers. JAMA Neurol 71(12):1481–1489. doi:10.1001/jamaneurol.2014.2482

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahairaki V, Ryu J, Peters A, Chang Q, Li T, Park TS, Burridge PW, Talbot CC Jr, Asnaghi L, Martin LJ, Zambidis ET, Koliatsos VE (2014) Induced pluripotent stem cells from familial Alzheimer’s disease patients differentiate into mature neurons with amyloidogenic properties. Stem Cells Dev 23(24):2996–3010. doi:10.1089/scd.2013.0511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Morales PL, Revilla A, Ocana I, Gonzalez C, Sainz P, McGuire D, Liste I (2013) Progress in stem cell therapy for major human neurological disorders. Stem Cell Rev 9(5):685–699. doi:10.1007/s12015-013-9443-6

    Article  CAS  PubMed  Google Scholar 

  • Martins-Taylor K, Xu RH (2012) Concise review: genomic stability of human induced pluripotent stem cells. Stem Cells 30(1):22–27. doi:10.1002/stem.705

    Article  CAS  PubMed  Google Scholar 

  • Masuda S, Wu J, Hishida T, Pandian GN, Sugiyama H, Izpisua Belmonte JC (2013) Chemically induced pluripotent stem cells (CiPSCs): a transgene-free approach. J Mol Cell Biol 5(5):354–355. doi:10.1093/jmcb/mjt034

    Article  CAS  PubMed  Google Scholar 

  • Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA, Sidransky E, Grabowski GA, Krainc D (2011) Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146(1):37–52. doi:10.1016/j.cell.2011.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JD, Ganat YM, Kishinevsky S, Bowman RL, Liu B, Tu EY, Mandal PK, Vera E, Shim JW, Kriks S, Taldone T, Fusaki N, Tomishima MJ, Krainc D, Milner TA, Rossi DJ, Studer L (2013) Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13(6):691–705. doi:10.1016/j.stem.2013.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muratore CR, Rice HC, Srikanth P, Callahan DG, Shin T, Benjamin LN, Walsh DM, Selkoe DJ, Young-Pearse TL (2014) The familial Alzheimer’s disease APPV717I mutation alters APP processing and tau expression in iPSC-derived neurons. Hum Mol Genet 23(13):3523–3536. doi:10.1093/hmg/ddu064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman AM, Cooper JB (2010) Lab-specific gene expression signatures in pluripotent stem cells. Cell Stem Cell 7(2):258–262. doi:10.1016/j.stem.2010.06.016

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, Kee K, Schule B, Dolmetsch RE, Langston W, Palmer TD, Pera RR (2011) LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8(3):267–280. doi:10.1016/j.stem.2011.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura K, Takahashi J (2013) Therapeutic application of stem cell technology toward the treatment of Parkinson’s disease. Biol Pharm Bull 36(2):171–175

    Article  CAS  PubMed  Google Scholar 

  • Niu Y, Guo X, Chen Y, Wang CE, Gao J, Yang W, Kang Y, Si W, Wang H, Yang SH, Li S, Ji W, Li XJ (2015) Early Parkinson’s disease symptoms in alpha-synuclein transgenic monkeys. Hum Mol Genet 24(8):2308–2317. doi:10.1093/hmg/ddu748

    Article  CAS  PubMed  Google Scholar 

  • Nussbaum RL, Ellis CE (2003) Alzheimer’s disease and Parkinson’s disease. N Engl J Med 348(14):1356–1364. doi:10.1056/NEJM2003ra020003

    Article  CAS  PubMed  Google Scholar 

  • Okano H, Yamanaka S (2014) iPS cell technologies: significance and applications to CNS regeneration and disease. Mol Brain 7:22. doi:10.1186/1756-6606-7-22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orenstein SJ, Kuo SH, Tasset I, Arias E, Koga H, Fernandez-Carasa I, Cortes E, Honig LS, Dauer W, Consiglio A, Raya A, Sulzer D, Cuervo AM (2013) Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 16(4):394–406. doi:10.1038/nn.3350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panicker LM, Miller D, Park TS, Patel B, Azevedo JL, Awad O, Masood MA, Veenstra TD, Goldin E, Stubblefield BK, Tayebi N, Polumuri SK, Vogel SN, Sidransky E, Zambidis ET, Feldman RA (2012) Induced pluripotent stem cell model recapitulates pathologic hallmarks of Gaucher disease. Proc Natl Acad Sci U S A 109(44):18054–18059. doi:10.1073/pnas.1207889109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell 134(5):877–886. doi:10.1016/j.cell.2008.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel S, Jung D, Yin PT, Carlton P, Yamamoto M, Bando T, Sugiyama H, Lee KB (2014) NanoScript: a nanoparticle-based artificial transcription factor for effective gene regulation. ACS Nano 8(9):8959–8967. doi:10.1021/nn501589f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Liu Q, Rao MS, Zeng X (2013) Using human pluripotent stem cell-derived dopaminergic neurons to evaluate candidate Parkinson’s disease therapeutic agents in MPP+ and rotenone models. J Biomol Screen 18(5):522–533. doi:10.1177/1087057112474468

    Article  CAS  PubMed  Google Scholar 

  • Pringsheim T, Jette N, Frolkis A, Steeves TD (2014) The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 29(13):1583–1590. doi:10.1002/mds.25945

    Article  PubMed  Google Scholar 

  • Qi SD, Smith PD, Choong PF (2014) Nuclear reprogramming and induced pluripotent stem cells: a review for surgeons. ANZ J Surg 84(6):417–423. doi:10.1111/ans.12419

    Article  PubMed  Google Scholar 

  • Qiu Z, Farnsworth SL, Mishra A, Hornsby PJ (2013) Patient-specific induced pluripotent stem cells in neurological disease modeling: the importance of nonhuman primate models. Stem Cells Cloning 6:19–29. doi:10.2147/SCCAA.S34798

    PubMed  PubMed Central  Google Scholar 

  • Raab S, Klingenstein M, Liebau S, Linta L (2014) A comparative view on human somatic cell sources for iPSC generation. Stem Cells Int 2014:768391. doi:10.1155/2014/768391

  • Rakovic A, Shurkewitsch K, Seibler P, Grunewald A, Zanon A, Hagenah J, Krainc D, Klein C (2013) Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons. J Biol Chem 288(4):2223–2237. doi:10.1074/jbc.M112.391680

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt P, Schmid B, Burbulla LF, Schondorf DC, Wagner L, Glatza M, Hoing S, Hargus G, Heck SA, Dhingra A, Wu G, Muller S, Brockmann K, Kluba T, Maisel M, Kruger R, Berg D, Tsytsyura Y, Thiel CS, Psathaki OE, Klingauf J, Kuhlmann T, Klewin M, Muller H, Gasser T, Scholer HR, Sterneckert J (2013) Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell 12(3):354–367. doi:10.1016/j.stem.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Jiang H, Hu Z, Fan K, Wang J, Janoschka S, Wang X, Ge S, Feng J (2015) Parkin mutations reduce the complexity of neuronal processes in iPSC-derived human neurons. Stem Cells 33(1):68–78. doi:10.1002/stem.1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revilla A, Gonzalez C, Iriondo A, Fernandez B, Prieto C, Marin C, Liste I (2015) Current advances in the generation of human iPS cells: implications in cell-based regenerative medicine. J Tissue Eng Regen Med. doi:10.1002/term.2021

  • Rhee YH, Ko JY, Chang MY, Yi SH, Kim D, Kim CH, Shim JW, Jo AY, Kim BW, Lee H, Lee SH, Suh W, Park CH, Koh HC, Lee YS, Lanza R, Kim KS, Lee SH (2011) Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. J Clin Invest 121(6):2326–2335. doi:10.1172/JCI45794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19(11):1029–1034. doi:10.1038/nbt1101-1029

    Article  CAS  PubMed  Google Scholar 

  • Ryan SD, Dolatabadi N, Chan SF, Zhang X, Akhtar MW, Parker J, Soldner F, Sunico CR, Nagar S, Talantova M, Lee B, Lopez K, Nutter A, Shan B, Molokanova E, Zhang Y, Han X, Nakamura T, Masliah E, Yates JR 3rd, Nakanishi N, Andreyev AY, Okamoto S, Jaenisch R, Ambasudhan R, Lipton SA (2013) Isogenic human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction in MEF2-PGC1alpha transcription. Cell 155(6):1351–1364. doi:10.1016/j.cell.2013.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Danes A, Consiglio A, Richaud Y, Rodriguez-Piza I, Dehay B, Edel M, Bove J, Memo M, Vila M, Raya A, Izpisua Belmonte JC (2012a) Efficient generation of A9 midbrain dopaminergic neurons by lentiviral delivery of LMX1A in human embryonic stem cells and induced pluripotent stem cells. Hum Gene Ther 23(1):56–69. doi:10.1089/hum.2011.054

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Danes A, Richaud-Patin Y, Carballo-Carbajal I, Jimenez-Delgado S, Caig C, Mora S, Di Guglielmo C, Ezquerra M, Patel B, Giralt A, Canals JM, Memo M, Alberch J, Lopez-Barneo J, Vila M, Cuervo AM, Tolosa E, Consiglio A, Raya A (2012b) Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Mol Med 4(5):380–395. doi:10.1002/emmm.201200215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders LH, Laganiere J, Cooper O, Mak SK, Vu BJ, Huang YA, Paschon DE, Vangipuram M, Sundararajan R, Urnov FD, Langston JW, Gregory PD, Zhang HS, Greenamyre JT, Isacson O, Schule B (2014) LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson’s disease patients: reversal by gene correction. Neurobiol Dis 62:381–386. doi:10.1016/j.nbd.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  • Santostefano KE, Hamazaki T, Biel NM, Jin S, Umezawa A, Terada N (2015) A practical guide to induced pluripotent stem cell research using patient samples. Lab Invest 95(1):4–13. doi:10.1038/labinvest.2014.104

    Article  CAS  PubMed  Google Scholar 

  • Seibler P, Graziotto J, Jeong H, Simunovic F, Klein C, Krainc D (2011) Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J Neurosci 31(16):5970–5976. doi:10.1523/JNEUROSCI.4441-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki T, Fukuda K (2015) Methods of induced pluripotent stem cells for clinical application. World J Stem Cells 7(1):116–125. doi:10.4252/wjsc.v7.i1.116

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaltouki A, Sivapatham R, Pei Y, Gerencser AA, Momcilovic O, Rao MS, Zeng X (2015) Mitochondrial alterations by PARKIN in dopaminergic neurons using PARK2 patient-specific and PARK2 knockout isogenic iPSC lines. Stem Cell Rep. doi:10.1016/j.stemcr.2015.02.019

  • Shao Y, Sang J, Fu J (2015) On human pluripotent stem cell control: the rise of 3D bioengineering and mechanobiology. Biomaterials 52:26–43. doi:10.1016/j.biomaterials.2015.01.078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Kirwan P, Smith J, MacLean G, Orkin SH, Livesey FJ (2012) A human stem cell model of early Alzheimer’s disease pathology in down syndrome. Sci Transl Med 4(124):124ra129. doi:10.1126/scitranslmed.3003771

    Article  Google Scholar 

  • Simao D, Pinto C, Piersanti S, Weston A, Peddie CJ, Bastos AE, Licursi V, Schwarz SC, Collinson LM, Salinas S, Serra M, Teixeira AP, Saggio I, Lima PA, Kremer EJ, Schiavo G, Brito C, Alves PM (2015) Modeling human neural functionality in vitro: three-dimensional culture for dopaminergic differentiation. Tissue Eng A 21(3–4):654–668. doi:10.1089/ten.TEA.2014.0079

    Article  CAS  Google Scholar 

  • Singh VK, Kalsan M, Kumar N, Saini A, Chandra R (2015) Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Develop Biol 3:2. doi:10.3389/fcell.2015.00002

    Article  Google Scholar 

  • Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136(5):964–977. doi:10.1016/j.cell.2009.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soldner F, Laganiere J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe LI, Myers RH, Lindquist S, Zhang L, Guschin D, Fong LK, Vu BJ, Meng X, Urnov FD, Rebar EJ, Gregory PD, Zhang HS, Jaenisch R (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146(2):318–331. doi:10.1016/j.cell.2011.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon S, Pitossi F, Rao MS (2015) Banking on iPSC—is it doable and is it worthwhile. Stem Cell Rev 11(1):1–10. doi:10.1007/s12015-014-9574-4

    Article  CAS  PubMed  Google Scholar 

  • Sommer CA, Sommer AG, Longmire TA, Christodoulou C, Thomas DD, Gostissa M, Alt FW, Murphy GJ, Kotton DN, Mostoslavsky G (2010) Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector. Stem Cells 28(1):64–74. doi:10.1002/stem.255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sproul AA, Jacob S, Pre D, Kim SH, Nestor MW, Navarro-Sobrino M, Santa-Maria I, Zimmer M, Aubry S, Steele JW, Kahler DJ, Dranovsky A, Arancio O, Crary JF, Gandy S, Noggle SA (2014) Characterization and molecular profiling of PSEN1 familial Alzheimer’s disease iPSC-derived neural progenitors. PLoS One 9(1):e84547. doi:10.1371/journal.pone.0084547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stacey GN, Crook JM, Hei D, Ludwig T (2013) Banking human induced pluripotent stem cells: lessons learned from embryonic stem cells? Cell Stem Cell 13(4):385–388. doi:10.1016/j.stem.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  • Stadtfeld M, Brennand K, Hochedlinger K (2008) Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol 18(12):890–894. doi:10.1016/j.cub.2008.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stocchi F (2014) Therapy for Parkinson’s disease: what is in the pipeline? Neurotherapeutics 11(1):24–33. doi:10.1007/s13311-013-0242-1

    Article  CAS  PubMed  Google Scholar 

  • Su YC, Qi X (2013) Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation. Hum Mol Genet 22(22):4545–4561. doi:10.1093/hmg/ddt301

    Article  CAS  PubMed  Google Scholar 

  • Sugii S, Kida Y, Kawamura T, Suzuki J, Vassena R, Yin YQ, Lutz MK, Berggren WT, Izpisua Belmonte JC, Evans RM (2010) Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proc Natl Acad Sci U S A 107(8):3558–3563. doi:10.1073/pnas.0910172106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swistowski A, Peng J, Liu Q, Mali P, Rao MS, Cheng L, Zeng X (2010) Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells 28(10):1893–1904. doi:10.1002/stem.499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. doi:10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  • Tong Z, Solanki A, Hamilos A, Levy O, Wen K, Yin X, Karp JM (2015) Application of biomaterials to advance induced pluripotent stem cell research and therapy. EMBO J 34(8):987–1008. doi:10.15252/embj.201490756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, Khalil A, Rheinwald JG, Hochedlinger K (2009) Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460(7259):1145–1148. doi:10.1038/nature08285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazin T, Freed WJ (2010) Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor Neurol Neurosci 28(4):589–603. doi:10.3233/RNN-2010-0543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Velasco I, Salazar P, Giorgetti A, Ramos-Mejia V, Castano J, Romero-Moya D, Menendez P (2014) Concise review: generation of neurons from somatic cells of healthy individuals and neurological patients through induced pluripotency or direct conversion. Stem Cells 32(11):2811–2817. doi:10.1002/stem.1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdier JM, Acquatella I, Lautier C, Devau G, Trouche S, Lasbleiz C, Mestre-Frances N (2015) Lessons from the analysis of nonhuman primates for understanding human aging and neurodegenerative diseases. Front Neurosci 9:64. doi:10.3389/fnins.2015.00064

    Article  PubMed  PubMed Central  Google Scholar 

  • Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041. doi:10.1038/nature08797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan W, Cao L, Kalionis B, Xia S, Tai X (2015) Applications of induced pluripotent stem cells in studying the neurodegenerative diseases. Stem Cells Int 2015:382530. doi:10.1155/2015/382530

  • Wang Q, Xu X, Li J, Liu J, Gu H, Zhang R, Chen J, Kuang Y, Fei J, Jiang C, Wang P, Pei D, Ding S, Xie X (2011) Lithium, an anti-psychotic drug, greatly enhances the generation of induced pluripotent stem cells. Cell Res 21(10):1424–1435. doi:10.1038/cr.2011.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodruff G, Young JE, Martinez FJ, Buen F, Gore A, Kinaga J, Li Z, Yuan SH, Zhang K, Goldstein LS (2013) The presenilin-1 DeltaE9 mutation results in reduced gamma-secretase activity, but not total loss of PS1 function, in isogenic human stem cells. Cell Rep 5(4):974–985. doi:10.1016/j.celrep.2013.10.018

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Sheng C, Liu Z, Jia W, Wang B, Li M, Fu L, Ren Z, An J, Sang L, Song G, Wu Y, Xu Y, Wang S, Chen Z, Zhou Q, Zhang YA (2015) Lmx1a enhances the effect of iNSCs in a PD model. Stem Cell Res 14(1):1–9. doi:10.1016/j.scr.2014.10.004

    Article  PubMed  CAS  Google Scholar 

  • Wu YL, Pandian GN, Ding YP, Zhang W, Tanaka Y, Sugiyama H (2013) Clinical grade iPS cells: need for versatile small molecules and optimal cell sources. Chem Biol 20(11):1311–1322. doi:10.1016/j.chembiol.2013.09.016

    Article  CAS  PubMed  Google Scholar 

  • Xu XH, Zhong Z (2013) Disease modeling and drug screening for neurological diseases using human induced pluripotent stem cells. Acta Pharmacol Sin 34(6):755–764. doi:10.1038/aps.2013.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H, Suzuki N (2011) Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet 20(23):4530–4539. doi:10.1093/hmg/ddr394

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920. doi:10.1126/science.1151526

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Luo Z, Tian W, Yang J, Ibanez DP, Huang Z, Tortorella MD, Esteban MA, Fan W (2014) Solving the puzzle of Parkinson’s disease using induced pluripotent stem cells. Exp Biol Med 239(11):1421–1432. doi:10.1177/1535370214538588

    Article  CAS  Google Scholar 

  • Zhao T, Zhang ZN, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474(7350):212–215. doi:10.1038/nature10135

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal Kursad Genc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Eren, E., Erkan, E.P., Genc, S., Genc, K.K. (2017). Induced Pluripotent Stem Cell Therapy and Safety Concerns in Age-Related Chronic Neurodegenerative Diseases. In: Pham, P., Rosemann, A. (eds) Safety, Ethics and Regulations. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-59165-0_2

Download citation

Publish with us

Policies and ethics