Travel Time Prediction for Trams in Warsaw

  • Adam Zychowski
  • Konstanty Junosza-Szaniawski
  • Aleksander Kosicki
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 578)

Abstract

The paper presents a comparison between different prediction methods for trams time travels in Warsaw. Predictions are constructed based on historical trams GPS positions. Three different prediction approaches were implemented and compared with the official timetables and real time travels. Obtained results show that the official timetables provides only approximated time travel especially in rush hours. Proposed prediction methods outperform the official schedule in the term of time travel precision and may be used as a more accurate source of travel time for passengers.

Keywords

Transportation Travel time prediction Neural network Decision support system 

References

  1. 1.
    Altinkaya, M., Zontul, M.: Urban bus arrival time prediction: a review of computational models. Int. J. Recent Technol. Eng. (IJRTE) 2(4), 164–169 (2013)Google Scholar
  2. 2.
    Central statistical office of Poland: area and population in the territorial profile in 2016. Statistical Information and Elaborations, Warsaw (2016). http://stat.gov.pl/en/topics/population/population/area-and-population-in-the-territorial-profile-in-2016,4,10.html
  3. 3.
    Chen, M., Chien, S.: Dynamic freeway travel time prediction using probe vehicle data: link-based vs. path-based. In: Transportation Research Board 80th Annual Meeting (2001)Google Scholar
  4. 4.
    Chien, S.I.J., Ding, Y., Wei, C.: Dynamic bus arrival time prediction with artificial neural networks. J. Transp. Eng. 128(5), 429–438 (2002)CrossRefGoogle Scholar
  5. 5.
    D’Angelo, M., Al-Deek, H., Wang, M.: Travel-time prediction for freeway corridors. Transp. Res. Rec. J. Transp. Res. Board 1676, 184–191 (1999)CrossRefGoogle Scholar
  6. 6.
    Gurmu, Z.K., Fan, W.D.: Artificial neural network travel time prediction model for buses using only gps data. J. Public Transp. 17(2), 45–65 (2014)CrossRefGoogle Scholar
  7. 7.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, Upper Saddle River (1998)MATHGoogle Scholar
  8. 8.
    Liu, H., van Zuylen, H., van Lint, H., Salomons, M.: Predicting urban arterial travel time with state-space neural networks and kalman filters. Transp. Res. Rec. J. Transp. Res. Board 1968, 99–108 (2006)CrossRefGoogle Scholar
  9. 9.
    Patnaik, J., Chien, S., Bladikas, A.: Estimation of bus arrival times using APC data. J. Public Transp. 7(1), 1–20 (2004)CrossRefGoogle Scholar
  10. 10.
    PBS Sp. z o.o.: Warszawskie badanie ruchu, Cracow University of Technology, Warsaw University of Technology (2015). http://transport.um.warszawa.pl/wbr2015. Accessed 10 Dec 2016
  11. 11.
    Ramakrishna, Y., Ramakrishna, P., Lakshmanan, V., Sivanandan, R.: Bus travel time prediction using gps data. Proceedings Map India (2006)Google Scholar
  12. 12.
    Van Lint, J., Hoogendoorn, S., van Zuylen, H.J.: Accurate freeway travel time prediction with state-space neural networks under missing data. Transp. Res. Part C: Emerg. Technol. 13(5), 347–369 (2005)CrossRefGoogle Scholar
  13. 13.
    Weigang, L., Koendjbiharie, W., de M Juca, R., Yamashita, Y., MacIver, A.: Algorithms for estimating bus arrival times using gps data. In: Proceedings of the IEEE 5th International Conference on Intelligent Transportation Systems, pp. 868–873. IEEE (2002)Google Scholar
  14. 14.
    Williams, B.M., Hoel, L.A.: Modeling and forecasting vehicular traffic flow as a seasonal arima process: theoretical basis and empirical results. J. Transp. Eng. 129(6), 664–672 (2003)CrossRefGoogle Scholar
  15. 15.
    Wu, C.H., Ho, J.M., Lee, D.T.: Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 5(4), 276–281 (2004)CrossRefGoogle Scholar
  16. 16.
    Yang, J.S.: Travel time prediction using the gps test vehicle and kalman filtering techniques. In: Proceedings of the 2005, American Control Conference, pp. 2128–2133. IEEE (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Adam Zychowski
    • 1
  • Konstanty Junosza-Szaniawski
    • 1
  • Aleksander Kosicki
    • 1
  1. 1.Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland

Personalised recommendations