Efficient Sketch Recognition Based on Shape Features and Multidimensional Indexing

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 578)

Abstract

Face sketch recognition on real forensic mug shot photo galleries is a complex task since a large amount of images needs to be matched in few seconds to produce a useful outcome. Several effective solutions for sketch-based subject identification have been recently proposed, but the cost of linear search makes them not scalable when large databases have to be scanned. In this work we propose an approach which combines the use of efficient shape features for sketch-photo matching with a suitable indexing structure based on dimensionality reduction. The proposed method provides a preliminary set of candidate photos to be used as input for the final identification based on state-of-the-art techniques, offering scalability and time efficiency without noticeably compromising recognition accuracy, as confirmed by the experimental results.

References

  1. 1.
    Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008). http://www.sciencedirect.com/science/article/pii/S1077314207001555. Similarity Matching in Computer Vision and MultimediaCrossRefGoogle Scholar
  2. 2.
    Bhanu, B., Tan, X.: Fingerprint indexing based on novel features of minutiae triplets. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 616–622 (2003)CrossRefGoogle Scholar
  3. 3.
    Bhatt, H.S., Bharadwaj, S., Singh, R., Vatsa, M.: On matching sketches with digital face images. In: 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–7, September 2010Google Scholar
  4. 4.
    Bhatt, H.S., Bharadwaj, S., Singh, R., Vatsa, M.: Memetically optimized MCWLD for matching sketches with digital face images. IEEE Trans. Inf. Forensics Secur. 7(5), 1522–1535 (2012)CrossRefGoogle Scholar
  5. 5.
    Buoncompagni, S., Franco, A., Maio, D.: Shape features for candidate photo selection in sketch recognition. In: 2014 22nd International Conference on Pattern Recognition, pp. 1728–1733, August 2014Google Scholar
  6. 6.
    Cappelli, R., Ferrara, M., Maltoni, D.: Fingerprint indexing based on minutia cylinder-code. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 1051–1057 (2011)CrossRefGoogle Scholar
  7. 7.
    Dey, S., Samanta, D.: Iris data indexing method using Gabor energy features. IEEE Trans. Inf. Forensics Secur. 7(4), 1192–1203 (2012)CrossRefGoogle Scholar
  8. 8.
    Franco, A., Lumini, A., Maio, D.: Mkl-tree: an index structure for high-dimensional vector spaces. Multimedia Syst. 12(6), 533–550 (2007). http://dx.doi.org/10.1007/s00530-006-0070-9 CrossRefGoogle Scholar
  9. 9.
    Gao, X., Zhong, J., Li, J., Tian, C.: Face sketch synthesis algorithm based on e-hmm and selective ensemble. IEEE Trans. Circ. Syst. Video Technol. 18(4), 487–496 (2008)CrossRefGoogle Scholar
  10. 10.
    Gyaourova, A., Ross, A.: Index codes for multibiometric pattern retrieval. IEEE Trans. Inf. Forensics Secur. 7(2), 518–529 (2012)CrossRefGoogle Scholar
  11. 11.
    Han, H., Klare, B., Bonnen, K., Jain, A.K.: Matching composite sketches to face photos: a component-based approach. IEEE Trans. Inf. Forensics Secur. 8, 191–204 (2013)CrossRefGoogle Scholar
  12. 12.
    He, J., Chang, S.F., Radhakrishnan, R., Bauer, C.: Compact hashing with joint optimization of search accuracy and time. In: CVPR 2011, pp. 753–760 (2011)Google Scholar
  13. 13.
    Kafai, M., Eshghi, K., Bhanu, B.: Discrete cosine transform locality-sensitive hashes for face retrieval. IEEE Trans. Multimedia 16(4), 1090–1103 (2014)CrossRefGoogle Scholar
  14. 14.
    Kaushik, V.D., Umarani, J., Gupta, A.K., Gupta, A.K., Gupta, P.: An efficient indexing scheme for face database using modified geometric hashing. Neurocomputing 116, 208–221 (2013). http://www.sciencedirect.com/science/article/pii/S0925231212006753 CrossRefGoogle Scholar
  15. 15.
    Klare, B., Jain, A.K.: Sketch-to-photo matching: a feature-based approach. In: 2010 Biometric Technology for Human Identification, vol. 7667, p. 766702–10 (2010). http://dx.doi.org/10.1117/12.849821
  16. 16.
    Klare, B., Li, Z., Jain, A.K.: Matching forensic sketches to mug shot photos. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 639–646 (2011). http://dx.doi.org/10.1109/TPAMI.2010.180 CrossRefGoogle Scholar
  17. 17.
    Klima, J.: Shape extraction framework for similarity search in image databases. In: Proceedings of the Dateso 2007 Annual International Workshop on DAtabases, TExts, Specifications and Objects, pp. 89–102 (2007)Google Scholar
  18. 18.
    Klum, S., Han, H., Jain, A.K., Klare, B.: Sketch based face recognition: forensic vs. composite sketches. In: 2013 International Conference on Biometrics (ICB), pp. 1–8 (2013)Google Scholar
  19. 19.
    Kukharev, G., Matveev, Y., Forczmański, P.: An approach to improve accuracy of photo–to–sketch matching. In: Campilho, A., Karray, F. (eds.) ICIAR 2016. LNCS, vol. 9730, pp. 385–393. Springer, Cham (2016). doi:10.1007/978-3-319-41501-7_44 CrossRefGoogle Scholar
  20. 20.
    Li, Y., Savvides, M., Bhagavatula, V.: Illumination tolerant face recognition using a novel face from sketch synthesis approach and advanced correlation filters. In: 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol. 2, p. II, May 2006Google Scholar
  21. 21.
    Mingqiang, Y., Kidiyo, K., Joseph, R.: A Survey of Shape Feature Extraction Techniques. INTECH Open Access Publisher (2008). https://books.google.it/books?id=BDDzoAEACAAJ
  22. 22.
    Mittal, P., Jain, A., Goswami, G., Singh, R., Vatsa, M.: Recognizing composite sketches with digital face images via SSD dictionary. In: IEEE International Joint Conference on Biometrics, pp. 1–6, September 2014Google Scholar
  23. 23.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefMATHGoogle Scholar
  24. 24.
    Tang, X., Wang, X.: Face sketch recognition. IEEE Trans. Circ. Syst. Video Technol. 14(1), 50–57 (2004)CrossRefGoogle Scholar
  25. 25.
    Wang, X., Tang, X.: Face photo-sketch synthesis and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 1955–1967 (2009)CrossRefGoogle Scholar
  26. 26.
    Wu, Z., Ke, Q., Sun, J., Shum, H.Y.: Scalable face image retrieval with identity-based quantization and multireference reranking. IEEE Trans. Pattern Anal. Mach. Intell. 33(10), 1991–2001 (2011)CrossRefGoogle Scholar
  27. 27.
    Xiao, B., Gao, X., Tao, D., Li, X.: A new approach for face recognition by sketches in photos. Sig. Process. 89(8), 1576–1588 (2009). http://www.sciencedirect.com/science/article/pii/S016516840900067X CrossRefMATHGoogle Scholar
  28. 28.
    Yuen, P.C., Man, C.H.: Human face image searching system using sketches. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 37(4), 493–504 (2007)CrossRefGoogle Scholar
  29. 29.
    Zhang, W., Wang, X., Tang, X.: Coupled information-theoretic encoding for face photo-sketch recognition. In: CVPR 2011, pp. 513–520 (2011)Google Scholar
  30. 30.
    Zhang, W., Wang, X., Tang, X.: Lighting and pose robust face sketch synthesis. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 420–433. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15567-3_31 CrossRefGoogle Scholar
  31. 31.
    Zhang, Y., McCullough, C., Sullins, J.R., Ross, C.R.: Hand-drawn face sketch recognition by humans and a PCA-based algorithm for forensic applications. Trans. Sys. Man Cyber. Part A 40(3), 475–485 (2010). http://dx.doi.org/10.1109/TSMCA.2010.2041654 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Simone Buoncompagni
    • 1
  • Annalisa Franco
    • 1
  • Dario Maio
    • 1
  1. 1.C.d.L. Ingegneria e Scienze InformaticheUniversity of BolognaCesena (FC)Italy

Personalised recommendations