Saliency-Based Optimization for the Histogram of Oriented Gradients-Based Detection Methods

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 578)

Abstract

The paper presents research on using graphical saliency cue for optimizing computation of the distance metrics for HoG features. Saliency values have been computed in the area of a HoG descriptor for macro and micro scale. Macro scale uses HoG features as a global descriptor for an image presenting a particular object, whereas micro scale consists of feature points and k-nearest neighbours approach to create similarity measure. Mechanism has been tested on a chosen database consisting of 20 000 images. Promising results have been achieved for macro scale approach.

Keywords

Saliency HoG SIFT Feature points Object detection k-NN 

References

  1. 1.
    Achanta, R., Süsstrunk, S.: Saliency detection using maximum symmetric surround. In: Proceedings of the International Conference on Image Processing, ICIP, pp. 2653–2656. Institute of Electrical and Electronics Engineers (IEEE), September 2010. http://dx.doi.org/10.1109/ICIP.2010.5652636
  2. 2.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008). Similarity Matching in Computer Vision and MultimediaCrossRefGoogle Scholar
  3. 3.
    Cheng, M.M., Mitra, N.J., Huang, X., Hu, S.M.: Salientshape: group saliency in image collections. Vis. Comput. 30(4), 443–453 (2014). http://dx.doi.org/10.1007/s00371-013-0867-4 CrossRefGoogle Scholar
  4. 4.
    Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H.S., Hu, S.M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015). http://dx.doi.org/10.1109/TPAMI.2014.2345401 CrossRefGoogle Scholar
  5. 5.
    Cheng, M.M., Zhang, Z., Lin, W.Y., Torr, P.H.S.: Bing: binarized normed gradients for objectness estimation at 300fps. In: IEEE CVPR. Institute of Electrical & Electronics Engineers (IEEE), June 2014. http://dx.doi.org/10.1109/CVPR.2014.414
  6. 6.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. http://dx.doi.org/10.1109/CVPR.2005.177
  7. 7.
    Erdem, E., Erdem, A.: Visual saliency estimation by nonlinearly integrating features using region covariances. J. Vis. 13(4), 11 (2013). http://dx.doi.org/10.1167/13.4.11 CrossRefGoogle Scholar
  8. 8.
    Perazzi, F.: Saliency filters: contrast based filtering for salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012. http://ieeexplore.ieee.org/servlet/opac?punumber=6235193
  9. 9.
    Gaurav, S., Frédéric, J., Cordelia, S.: Discriminative spatial saliency for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3506–3513 (2012). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6248093
  10. 10.
    Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.: The Amsterdam library of object images, January 2005. http://dx.doi.org/10.1023/B:VISI.0000042993.50813.60
  11. 11.
    Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. Institute of Electrical and Electronics Engineers (IEEE), June 2007. http://dx.doi.org/10.1109/CVPR.2007.383267
  12. 12.
    Li, J., Tian, Y., Duan, L., Huang, T.: Estimating visual saliency through single image optimization. IEEE Signal Process. Lett. 20(9), 845–848 (2013). http://dx.doi.org/10.1109/LSP.2013.2268868 CrossRefGoogle Scholar
  13. 13.
    Harel, J.: Graph-based visual saliency. In: Neural Information Processing Systems (NIPS), vol. 2006, pp. 545–552 (2006). https://papers.nips.cc/paper/3095-graph-based-visual-saliency.pdf
  14. 14.
    Kadir, T., Brady, M.: Saliency, scale and image description. Int. J. Comput. Vis. 45(2), 83–105 (2001). http://dx.doi.org/10.1023/A:1012460413855 CrossRefMATHGoogle Scholar
  15. 15.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  16. 16.
    Lowe, D.: Object recognition from local scale-invariant features (1999). http://dx.doi.org/10.1109/ICCV.1999.790410
  17. 17.
    Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002). doi:10.1007/3-540-47969-4_9 CrossRefGoogle Scholar
  18. 18.
    Ming, M.C., Guo, X.Z., Niloy, J.M., Xiaolei, H., Shi, M.H.: Global contrast based salient region detection. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 409–416 (2011). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5995344
  19. 19.
    Radhakrishna, A., Sheila, H., Francisco, E., Sabine, S.: Frequency-tuned salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1597–1604 (2009). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5206596
  20. 20.
    Valenti, R.: Image saliency by isocentric curvedness and color. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2185–2192 (2009). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5459240
  21. 21.
    Rudoy, D., Goldman, D.B., Shechtman, E., Zelnik-Manor, L.: Learning video saliency from human gaze using candidate selection. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1147–1154. Institute of Electrical and Electronics Engineers (IEEE), June 2013. http://dx.doi.org/10.1109/CVPR.2013.152
  22. 22.
    Seo, H.J., Milanfar, P.: Static and space-time visual saliency detection by self-resemblance. J. Vis. 9(12), 1–27 (2009). http://dx.doi.org/10.1167/9.12.15 CrossRefGoogle Scholar
  23. 23.
    Shi, K., Wang, K., Lu, J., Lin, L.: Pisa: Pixelwise image saliency by aggregating complementary appearance contrast measures with spatial priors. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2115–2122. Institute of Electrical and Electronics Engineers (IEEE), June 2013. http://dx.doi.org/10.1109/CVPR.2013.275
  24. 24.
    Kadir, T.: Scale saliency: a novel approach to salient feature and scale selection. In: International Conference on Visual Information Engineering, VIE 2003 (2003)Google Scholar
  25. 25.
    Toet, A.: Computational versus psychophysical bottom-up image saliency: a comparative evaluation study. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2131–2146 (2011). http://dx.doi.org/10.1109/TPAMI.2011.53 CrossRefGoogle Scholar
  26. 26.
    Wang, M., Konrad, J., Ishwar, P., Jing, K., Rowley, H.: Image saliency: from intrinsic to extrinsic context. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 417–424. Institute of Electrical and Electronics Engineers (IEEE), June 2011. http://dx.doi.org/10.1109/CVPR.2011.5995743
  27. 27.
    Cui, X.: Temporal spectral residual: fast motion saliency detection. In: Proceedings of the 17th ACM International Conference on Multimedia (2009). http://dl.acm.org/citation.cfm?id=1631272

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Control and Industrial ElectronicsWarsaw University of TechnologyWarsawPoland

Personalised recommendations