Towards Privacy-Aware Keyboards

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 578)

Abstract

As shown by various studies, the dynamics of typing on a keyboard is characteristic to persons. On the one hand, this may allow for person identification based on keystroke dynamics in various applications. On the other hand, in certain situations, such as chat-based anonymous helplines, web search for sensitive topics, etc., users may not want to reveal their identity. In general, there are various methods to increase the protection of personal data. In this paper, we propose the concept of privacy-aware keyboard, i.e., a keyboard which transmits keyboard events (such as pressing or releasing of a key) with small random delays in order to ensure that the identity of the user is difficult to be inferred from her typing dynamics. We use real-world keystroke dynamics data in order to simulate privacy-aware keyboards with uniformly random delay and Gaussian delay. The experimental results indicate that the proposed techniques may have an important contribution to keeping the anonymity of users.

Keywords

Privacy Keystroke dynamics Machine learning Web search 

References

  1. 1.
    Antal, M., Szabó, L.Z., László, I.: Keystroke dynamics on android platform. Procedia Technol. 19, 820–826 (2015)CrossRefGoogle Scholar
  2. 2.
    Monrose, F., Rubin, A.D.: Keystroke dynamics as a biometric for authentication. Future Gener. Comput. Syst. 16(4), 351–359 (2000)CrossRefGoogle Scholar
  3. 3.
    Doroz, R., Porwik, P., Safaverdi, H.: The new multilayer ensemble classifier for verifying users based on keystroke dynamics. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawiński, B. (eds.) ICCCI 2015. LNCS (LNAI), vol. 9330, pp. 598–605. Springer, Cham (2015). doi:10.1007/978-3-319-24306-1_58 CrossRefGoogle Scholar
  4. 4.
    Buza, K., Neubrandt, D.: How you type is who you are. In: 11th IEEE International Symposium on Applied Computational Intelligence and Informatics, pp. 453–456 (2016)Google Scholar
  5. 5.
    Kozierkiewicz-Hetmanska, A., Marciniak, A., Pietranik, M.: Data evolution method in the procedure of user authentication using keystroke dynamics. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016. LNCS (LNAI), vol. 9875, pp. 379–387. Springer, Cham (2016). doi:10.1007/978-3-319-45243-2_35 CrossRefGoogle Scholar
  6. 6.
    Korolova, A., Kenthapadi, K., Mishra, N., Ntoulas, A.: Releasing search queries and clicks privately. In: Proceedings of the 18th International Conference on World Wide Web, pp. 171–180 (2009)Google Scholar
  7. 7.
    Wong, F., Supian, A.S.M., Ismail, A.F., Kin, L.W., Soon, O.C.: Enhanced user authentication through typing biometrics with artificial neural networks and k-nearest neighbor algorithm. In: 35th IEEE Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 911–915 (2001)Google Scholar
  8. 8.
    Nanopoulos, A., Alcock, R., Manolopoulos, Y.: Feature-based classification of time-series data. Int. J. Comput. Res. 10(3), 49–61 (2001)Google Scholar
  9. 9.
    Kim, S., Smyth, P., Luther, S.: Modeling waveform shapes with random effects segmental hidden Markov models. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, pp. 309–316 (2004)Google Scholar
  10. 10.
    Wozniak, M., Jackowski, K.: Fusers based on classifier response and discriminant function – comparative study. In: Corchado, E., Abraham, A., Pedrycz, W. (eds.) HAIS 2008. LNCS (LNAI), vol. 5271, pp. 361–368. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87656-4_45 CrossRefGoogle Scholar
  11. 11.
    Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M.: Ensemble learning for data stream analysis: a survey. Inf. Fusion 37, 132–156 (2017)CrossRefGoogle Scholar
  12. 12.
    Buza, K., Nanopoulos, A., Horváth, T., Schmidt-Thieme, L.: GRAMOFON: general model-selection framework based on networks. Neurocomputing 75(1), 163–170 (2012)CrossRefGoogle Scholar
  13. 13.
    Buza, K.: Fusion Methods for Time-Series Classification. Peter Lang Verlag (2011)Google Scholar
  14. 14.
    Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5(4), 221–232 (2016)CrossRefGoogle Scholar
  15. 15.
    Saez, J.A., Krawczyk, B., Wozniak, M.: Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets. Pattern Recogn. 57, 164–178 (2016)CrossRefGoogle Scholar
  16. 16.
    Ramírez-Gallego, S., Krawczyk, B., García, S., Woźniak, M., Herrera, F.: A survey on data preprocessing for data stream mining: current status and future directions. Neurocomputing 239, 39–57 (2017)Google Scholar
  17. 17.
    Xi, X., Keogh, E., Shelton, C., Wei, L., Ratanamahatana, C.A.: Fast time series classification using numerosity reduction. In: Proceedings of the 23rd ACM International Conference on Machine Learning, pp. 1033–1040 (2006)Google Scholar
  18. 18.
    Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endowment 1(2), 1542–1552 (2008)CrossRefGoogle Scholar
  19. 19.
    Chen, G.H., Nikolov, S., Shah, D.: A latent source model for nonparametric time series classification. Adv. Neural Inf. Proc. Syst. 26, 1088–1096 (2013)Google Scholar
  20. 20.
    Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Springer, New York (1996)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Knowledge Discovery and Machine LearningRheinische Friedrich-Wilhelms-Universität BonnBonnGermany
  2. 2.University of DunaujvarosDunaujvarosHungary

Personalised recommendations