A Vision-Based Method for Automatic Crack Detection in Railway Sleepers

  • Ahmad Delforouzi
  • Amir Hossein Tabatabaei
  • Muhammad Hassan Khan
  • Marcin Grzegorzek
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 578)

Abstract

In this paper, a method for automatic selection and classification of the sleeper cracks is presented. This method includes three main sequential steps of image pre-processing, sleeper detection and crack detection. Two approaches including rule-based method and template matching method in the frequency domain are proposed for the sleeper detection step. We utilize adaptive threshold binarization to handle challenging crack detection under non-uniform lightening condition and hierarchical structure for the decision making step. Two unsupervised classifiers are exploited to detect the cracks. The results show that the presented method has the overall detection rate with accuracy of at least 87 percent.

Keywords

Sleeper crack detection Adaptive thresholding Support vector machines Template matching 

References

  1. 1.
  2. 2.
    Bernsen, J.: Dynamic thresholding of gray-level images. In: Proceedings of the 8th International Conference on Pattern Recognition, pp. 1251–1255 (1986)Google Scholar
  3. 3.
    Fujita, Y., Mitani, Y., Hamamoto, Y.: A method for crack detection on a concrete structure. In: Proceedings of the 18th International Conference on Pattern Recognition (ICPR 2006), vol. 3, pp. 901–904 (2006)Google Scholar
  4. 4.
    Gatos, B., Pratikakis, I., Perantonis, S.J.: Adaptive degraded document image binarization. Pattern Recogn. 39(3), 317–327 (2006). http://www.sciencedirect.com/science/article/pii/S0031320305003821 CrossRefMATHGoogle Scholar
  5. 5.
    Goshtasby, A., Gage, S.H., Bartholic, J.F.: A two-stage cross correlation approach to template matching. IEEE Trans. Pattern Anal. Mach. Intell. 6(3), 374–378 (1984)CrossRefGoogle Scholar
  6. 6.
    Khan, M.H., Helsper, J., Yang, C., Grzegorzek, M.: An automatic vision-based monitoring system for accurate Vojta-Therapy. In: Proceedings of the 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), pp. 1–6. IEEE (2016)Google Scholar
  7. 7.
    Khan, M.H., Shirahama, K., Farid, M.S., Grzegorzek, M.: Multiple human detection in depth images. In: International Workshop on Multimedia Signal Processing (MMSP). IEEE (2016)Google Scholar
  8. 8.
    Le, T.H.N., Bui, T.D., Suen, C.Y.: Ternary entropy-based binarization of degraded document images using morphological operators. In: 2011 International Conference on Document Analysis and Recognition, pp. 114–118, September 2011Google Scholar
  9. 9.
    Lu, S., Su, B., Tan, C.L.: Document image binarization using background estimation and stroke edges. Int. J. Doc. Anal. Recogn. (IJDAR) 13(4), 303–314 (2010). http://dx.doi.org/10.1007/s10032-010-0130-8 CrossRefGoogle Scholar
  10. 10.
    Lyon, D.: The discrete fourier transform, part 6: cross-correlation. J. Object Technol. 9(2), 17–22 (2010)CrossRefGoogle Scholar
  11. 11.
    Mohammad, S.P.: Machine vision for automating visual inspection of wooden railway sleepers. Master’s thesis, Department of Computer Science, Dalarna University (2008)Google Scholar
  12. 12.
    Niblack, W.: An Introduction to Digital Image Processing. Strandberg Publishing Company, Birkeroed (1985). pp. 115–116Google Scholar
  13. 13.
    Oh, H.H., Lim, K., Chien, S.I.: An improved binarization algorithm based on a water flow model for document image with inhomogeneous backgrounds. Pattern Recogn. 38(12), 2612–2625 (2005). http://www.sciencedirect.com/science/article/pii/S0031320305001317 CrossRefGoogle Scholar
  14. 14.
    Oliveira, H., Correia, P.L.: Automatic road crack detection and characterization. IEEE Trans. Intell. Transp. Syst. 14(1), 155–168 (2013)CrossRefGoogle Scholar
  15. 15.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979). http://dx.doi.org/10.1109/TSMC.1979.4310076 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Prasanna, P., Dana, K.J., Gucunski, N., Basily, B.B., La, H.M., Lim, R.S., Parvardeh, H.: Automated crack detection on concrete bridges. IEEE Trans. Autom. Sci. Eng. 13(2), 591–599 (2016)CrossRefGoogle Scholar
  17. 17.
    Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recogn. 33(2), 225–236 (2000). http://www.sciencedirect.com/science/article/pii/S0031320399000552 CrossRefGoogle Scholar
  18. 18.
    Su, B., Lu, S., Tan, C.L.: Binarization of historical document images using the local maximum and minimum. In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, DAS 2010, NY, USA, pp. 159–166 (2010). http://doi.acm.org/10.1145/1815330.1815351
  19. 19.
    Yamaguchi, T., Nakamura, S., Hashimoto, S.: An efficient crack detection method using percolation-based image processing. In: 2008 3rd IEEE Conference on Industrial Electronics and Applications, pp. 1875–1880, June 2008Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ahmad Delforouzi
    • 1
  • Amir Hossein Tabatabaei
    • 1
  • Muhammad Hassan Khan
    • 1
  • Marcin Grzegorzek
    • 1
  1. 1.Pattern Recognition GroupUniversity of SiegenSiegenGermany

Personalised recommendations