Skip to main content

Attractor Basin Analysis of the Hopfield Model: The Generalized Quadratic Knapsack Problem

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10305))

Included in the following conference series:

Abstract

The Continuous Hopfield Neural Network (CHN) is a neural network which can be used to solve some optimization problems. The weights of the network are selected based upon a set of parameters which are deduced by mapping the optimization problem to its associated CHN. When the optimization problem is the Traveling Salesman Problem, for instance, this mapping process leaves one free parameter; as this parameter decreases, better solutions are obtained. For the general case, a Generalized Quadratic Knapsack Problem (GQKP), there are some free parameters which can be related to the saddle point of the CHN. Whereas in simple instances of the GQKP, this result guarantees that the global optimum is always obtained, in more complex instances, this is far more complicated. However, it is shown how in the surroundings of the saddle point the attractor basins for the best solutions grow as the free parameter decreases, making saddle point neighbors excellent starting point candidates for the CHN. Some technical results and some computational experiences validate this behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Demuth, H.B., Beale, M.H., De Jess, O., Hagan, M.T.: Neural Network Design. PWS Publishing Company, Boston (1996)

    Google Scholar 

  2. García, L., Talaván, P.M., Yáñez, J.: Improving the Hopfield model performance when applied to the traveling salesman problem. Soft Comput. 1–15 (2016). doi:10.1007/s00500-016-2039-8

  3. Gopal, M.: Modern Control System Theory. New Age International, New Delhi (1993)

    Google Scholar 

  4. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. 79(8), 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  5. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Nat. Acad. Sci. 81(10), 3088–3092 (1984)

    Article  Google Scholar 

  6. Hopfield, J.J., Tank, D.W.: “Neural” computation of decisions in optimization problems. Biol. Cybern. 52(3), 141–152 (1985)

    MATH  Google Scholar 

  7. Koopmans, T.C., Beckmann, M.: Assignment problems and the location of economic activities. Econom.: J. Econom. Soc. 25, 53–76 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  8. Reinelt, G.: TSPLIB. A traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)

    Article  MATH  Google Scholar 

  9. Rojas, R.: Neural Networks: A Systematic Introduction. Springer Science & Business Media, Heidelberg (2013)

    MATH  Google Scholar 

  10. Talaván, P.M., Yáñez, J.: Parameter setting of the Hopfield network applied to TSP. Neural Netw. 15(3), 363–373 (2002)

    Article  Google Scholar 

  11. Talaván, P.M.: Ph.D. dissertation: El modelo de Hopfield aplicado a problemas de optimización combinatoria, Universidad Complutense de Madrid (2003)

    Google Scholar 

  12. Talaván, P.M., Yáñez, J.: The generalized quadratic knapsack problem. A neuronal network approach. Neural Netw. 19(4), 416–428 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This research has been partially supported by the Government of Spain, grant TIN2015-66471-P, and by the local Government of Madrid, grant S2013/ICE-2845 (CASI-CAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas García .

Editor information

Editors and Affiliations

A Some Technical Results of the Illustrative Example

A Some Technical Results of the Illustrative Example

Recalling the GQKP problem introduced in Sect. 2, a stability analysis of the valid solutions is carried out, looking for the parameters that guarantee that the CHN is stable in the feasible solutions. The energy function obtained for the simple GQKP problem (see Eq. 3) was:

$$\begin{aligned} \begin{array}{ll} E\left( \mathbf {v}\right) &{} = \alpha {}\, \left( 2\, {v_{1}}^2 - {v_{2}}^2\right) + \frac{1}{2} \phi _{1,1} \left( v_{1} + v_{2}\right) ^2 - \gamma _{1} v_{1} \left( v_{1} - 1\right) - \gamma _{2} v_{2}\left( v_{2} - 1\right) \\ &{} {=} + \beta _{1} \left( v_{1} + v_{2}\right) \end{array} \end{aligned}$$

Referencing Talaván and Yáñez [12], the stability of any \(\mathbf {v} \in H\) is ensured if:

$$\begin{aligned} \min _{\mathbf {v} \in H_F} \underline{E}^0(\mathbf {v}) \ge 0 \end{aligned}$$
(4)
$$\begin{aligned} \max _{\mathbf {v} \in H_F} \overline{E}^1(\mathbf {v}) \le 0 \end{aligned}$$
(5)
$$\begin{aligned} E_{n+k}(\mathbf {v}) = 0 \quad \forall k \in \{1,\ldots ,m_1\}{\ /}\ v_{n+k} \in (0,1) \quad \forall \mathbf {v} \in H_F \end{aligned}$$
(6)

where

$$\begin{aligned} E_i(\mathbf {v}) \equiv \displaystyle \frac{\partial E(\mathbf {v})}{\partial v_i} \qquad \underline{E}^0(\mathbf {v}) \equiv \displaystyle \min _{v_i = 0}E_{i}(\mathbf {v}) \qquad \overline{E}^1(\mathbf {v}) \equiv \displaystyle \min _{v_i = 1} E_{i}(\mathbf {v}) \end{aligned}$$

Although analyzing all feasible solutions would be a very difficult task with a GQKP, this simple example allows rigorous analysis. Thus, the partial derivatives of the energy function will be of the form:

$$\begin{aligned} \begin{array}{ll} E_{1}\left( \mathbf {v}\right) &{}= {-} 4\alpha v_{1} + \phi _{1,1} v_{1} + \phi _{1,1} v_{2} - 2\gamma _{1}v_{1} + \gamma _{1} + \beta _{1}\\ E_{2}\left( \mathbf {v}\right) &{}=-2\alpha v_{2} + \phi _{1,1} v_{1} + \phi _{1,1} v_{2} - 2\gamma _{2}v_{2} + \gamma _{2} + \beta _{1} \end{array} \end{aligned}$$

Condition 4 is satisfied if:

$$\begin{aligned} \begin{array}{rcl} \underline{E}^{0}( \left[ {\begin{matrix}1\\ 0\end{matrix}}\right] ) &{} = &{} \min \{E_{2}( \left[ {\begin{matrix}1\\ 0\end{matrix}}\right] )\} = \phi _{1,1} + \gamma _{2} + \beta _{1} \ge 0 \\ \underline{E}^{0}( \left[ {\begin{matrix}0\\ 1\end{matrix}}\right] ) &{} = &{} \min \{ E_{1}( \left[ {\begin{matrix}0\\ 1\end{matrix}}\right] ) \} = \phi _{1,1} + \gamma _{1} + \beta _{1} \ge 0 \end{array} \end{aligned}$$

and Condition 5 is satisfied if:

$$\begin{aligned} \begin{array}{rcl} \overline{E}^{1}( \left[ {\begin{matrix}1\\ 0\end{matrix}}\right] ) &{} = &{} \max \{E_{1}( \left[ {\begin{matrix}1\\ 0\end{matrix}}\right] )\} = {-}4\alpha + \phi _{1,1} - \gamma _{1} + \beta _{1} \le 0 \\ \overline{E}^{1}( \left[ {\begin{matrix}0\\ 1\end{matrix}}\right] ) &{} = &{} \max \{ E_{2}( \left[ {\begin{matrix}0\\ 1\end{matrix}}\right] ) \} = -2\alpha + \phi _{1,1} -\gamma _{2} + \beta _{1} \le 0 \end{array} \end{aligned}$$

This example does not use Condition 6 as no slack variables are needed.

The instability of any interior point \(\mathbf {v} \in H \setminus H_C\) is guaranteed if:

$$ T_{i,i} \ge 0 \quad \forall i \in \{1,\dots ,n\} $$

and the stability of valid solutions is obtained if \(\mathbf {\varPhi }\) is positive semidefinite:

$$\phi _{k,l} \ge 0 \quad \forall k,l \in \{1,\dots ,m\}$$

The instability of any non-feasible corner is obtained by creating a partition of the set \(H_{C}\setminus H_{F}\) and forcing the instability conditions for each of the elements in the partition:

$$ \vee \left\{ \begin{array}{rcl} \underline{E}^0(\mathbf {v}) &{} \le &{} - \varepsilon \\ \overline{E}^1(\mathbf {v}) &{} \ge &{} \varepsilon \\ E_{n+k}(\mathbf {v}) &{} \ne &{} 0 \quad \text {for any } v_{n+k} \in (0,1) \end{array} \right. \qquad \text {with } \varepsilon > 0$$

Going forward the partition \(H_C \setminus H_F\) is created using the direct method introduced by Talaván [11]. In summary, this partition is created considering the different cases which may occur when the constraints for \(H_F\) are violated. Thus, given \(\mathbf {v} \in H_C \setminus H_F\), the instability will be found from the first unsatisfied constraint, distinguishing inequalities and equations (which may not be satisfied by excess or defect):

$$H_C \setminus H_F = \bigcup _{k=1}^{m_{1}}W_{k,0} \bigcup _{k=1}^{m}W_{k,1} \bigcup _{k=1}^{m}W_{k,2} $$

where

For the GQKP problem being studied, the partition gets reduced to:

$$ H_C \setminus H_F = W_{1,1} \cup W_{1,2} $$

where

  • \(W_{1,1} = \{e_{1}(\mathbf {v})\> 1\} = \{ v_{1} + v_{2} > 1\} \), which is satisfied if \(v_{1} = 1\) and \(v_{2} = 1\):

    $$ \left\{ \begin{array}{l} E_{1}(\mathbf {v})> {-}4\alpha + 2\phi _{1,1} - \gamma _{1} + \beta _{1}\\ E_{2}(\mathbf {v}) > -2\alpha + 2\phi _{1,1} - \gamma _{2} + \beta _{1} \end{array} \right. $$

    and the instability is guaranteed if:

    $$ \vee \left\{ \begin{array}{l} {-}4\alpha + 2\phi _{1,1} - \gamma _{1} + \beta _{1} \ge \varepsilon \\ -2\alpha + 2\phi _{1,1} - \gamma _{2} + \beta _{1} \ge \varepsilon \end{array} \right. $$
  • \(W_{1,2} = \{e_{1}(\mathbf {v})< 1\} = \{ v_{1} + v_{2} < 1\}\), which is satisfied if \(v_{1} = 0\) y \(v_{2} = 0\):

    $$ \left\{ \begin{array}{l} E_{1}(\mathbf {v}) \le \gamma _{1} + \beta _{1}\\ E_{2}(\mathbf {v}) \le \gamma _{2} + \beta _{1} \end{array} \right. $$

    and the instability is guaranteed if:

    $$ \vee \left\{ \begin{array}{l} \gamma _{1} + \beta _{1} \le -\varepsilon \\ \gamma _{2} + \beta _{1} \le -\varepsilon \end{array} \right. $$

Therefore, considering the initial conditions and choosing from the recently obtained inequalities, the following set of linear inequalities guarantees the stability of feasible solutions and instability of non-feasible ones:

$$\begin{aligned} {\left\{ \begin{array}{ll} \begin{array}{rrr} T_{1,1} = &{}- 4\alpha - \phi _{1,1} + 2\gamma _{1} \ge &{} 0\\ T_{2,2} = &{} {-}2\alpha - \phi _{1,1} + 2\gamma _{2} \ge &{} 0\\ &{} \phi _{1,1} \ge &{} 0\\ W_{1,1}: &{} 4\alpha + 2\phi _{1,1} - \gamma _{1} + \beta _{1} \ge &{} \varepsilon \\ W_{1,2}: &{} \gamma _{2} + \beta _{1} \le &{}-\varepsilon \end{array} \end{array}\right. } \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

García, L., Talaván, P.M., Yáñez, J. (2017). Attractor Basin Analysis of the Hopfield Model: The Generalized Quadratic Knapsack Problem. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10305. Springer, Cham. https://doi.org/10.1007/978-3-319-59153-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59153-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59152-0

  • Online ISBN: 978-3-319-59153-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics