Skip to main content

Class Switching Ensembles for Ordinal Regression

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10305))

Included in the following conference series:

Abstract

The term ordinal regression refers to classification tasks in which the categories have a natural ordering. The main premise of this learning paradigm is that the ordering can be exploited to generate more accurate predictors. The goal of this work is to design class switching ensembles that take into account such ordering so that they are more accurate in ordinal regression problems. In standard (nominal) class switching ensembles, diversity among the members of the ensemble is induced by injecting noise in the class labels of the training instances. Assuming that the classes are interchangeable, the labels are modified at random. In ordinal class switching, the ordering between classes is taken into account by reducing the transition probabilities to classes that are further apart. In this manner smaller label perturbations in the ordinal scale are favoured. Two different specifications of these transition probabilities are considered; namely, an arithmetic and a geometric decrease with the absolute difference of the class ranks. These types of ordinal class switching ensembles are compared with an ensemble method that does not consider class-switching, a nominal class-switching ensemble, an ordinal variant of boosting, and two state-of-the-art ordinal classifiers based on support vector machines and Gaussian processes, respectively. These methods are evaluated and compared in a total of 15 datasets, using three different performance metrics. From the results of this evaluation one concludes that ordinal class-switching ensembles are more accurate than standard class-switching ones and than the ordinal ensemble method considered. Furthermore, their performance is comparable to the state-of-the-art ordinal regression methods considered in the analysis. Thus, class switching ensembles with specifically designed transition probabilities, which take into account the relationships between classes, are shown to provide very accurate predictions in ordinal regression problems.

This work has been partially supported by projects TIN2014-54583-C2-1-R, TIN2013-42351-P, TIN2016-76406-P and TIN2015-70308-REDT of the Spanish Ministerial Commission of Science and Technology (MINECO, Spain) and FEDER funds (EU).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at http://www.uco.es/grupos/ayrna/orreview.

References

  1. Baccianella, S., Esuli, A., Sebastiani, F.: Evaluation measures for ordinal regression. In: Proceedings of the Ninth International Conference on Intelligent Systems Design and Applications (ISDA 2009), pp. 283–287 (2009)

    Google Scholar 

  2. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach. Learn. 36(1), 105–139 (1999). http://dx.doi.org/10.1023/A:1007515423169

    Article  Google Scholar 

  3. Breiman, L.: Randomizing outputs to increase prediction accuracy. Mach. Learn. 40(3), 229–242 (2000). http://dx.doi.org/10.1023/A:1007682208299

    Article  MATH  Google Scholar 

  4. Cardoso, J.S., da Costa, J.F.P.: Learning to classify ordinal data: the data replication method. J. Mach. Learn. Res. 8, 1393–1429 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Chu, W., Ghahramani, Z.: Gaussian processes for ordinal regression. J. Mach. Learn. Res. 6, 1019–1041 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). doi:10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  8. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15, 3133–3181 (2014). http://jmlr.org/papers/v15/delgado14a.html

    MathSciNet  MATH  Google Scholar 

  9. Fernandez-Navarro, F., Gutiérrez, P.A., Hervás-Martínez, C., Yao, X.: Negative correlation ensemble learning for ordinal regression. IEEE Trans. Neural Netw. Learn. Syst. 24(11), 1836–1849 (2013). http://dx.doi.org/10.1109/TNNLS.2013.2268279, jCR (2013): 4.370 (category COMPUTER SCIENCE, THEORY & METHODS, position 2/102 Q1)

  10. Frank, E., Hall, M.: A simple approach to ordinal classification. In: Raedt, L., Flach, P. (eds.) ECML 2001. LNCS, vol. 2167, pp. 145–156. Springer, Heidelberg (2001). doi:10.1007/3-540-44795-4_13

    Chapter  Google Scholar 

  11. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res. 4, 933–969 (2003). http://dl.acm.org/citation.cfm?id=945365.964285

    MathSciNet  MATH  Google Scholar 

  12. Gutiérrez, P.A., Perez-Ortiz, M., Sanchez-Monedero, J., Fernandez-Navarro, F., Hervas-Martinez, C.: Ordinal regression methods: survey and experimental study. IEEE Trans. Knowl. Data Eng. 28(1), 127–146 (2016)

    Article  Google Scholar 

  13. Kim, H., Thiagarajan, J.J., Bremer, P.T.: Image segmentation using consensus from hierarchical segmentation ensembles. In: ICIP, pp. 3272–3276. IEEE (2014)

    Google Scholar 

  14. Kwon, Y.S., Han, I., Lee, K.C.: Ordinal pairwise partitioning (OPP) approach to neural networks training in bond rating. Int. Syst. Account. Finan. Manag. 6(1), 23–40 (1997)

    Article  Google Scholar 

  15. Lin, H.-T., Li, L.: Large-Margin thresholded ensembles for ordinal regression: theory and practice. In: Balcázar, J.L., Long, P.M., Stephan, F. (eds.) ALT 2006. LNCS, vol. 4264, pp. 319–333. Springer, Heidelberg (2006). doi:10.1007/11894841_26

    Chapter  Google Scholar 

  16. Lin, H.T., Li, L.: Combining ordinal preferences by boosting. In: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), pp. 69–83 (2009)

    Google Scholar 

  17. Lin, H.T., Li, L.: Reduction from cost-sensitive ordinal ranking to weighted binary classification. Neural Comput. 24(5), 1329–1367 (2012)

    Article  MATH  Google Scholar 

  18. Martínez-Muñoz, G., Sánchez-Martínez, A., Hernández-Lobato, D., Suárez, A.: Building ensembles of neural networks with class-switching. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 178–187. Springer, Heidelberg (2006). doi:10.1007/11840817_19

    Chapter  Google Scholar 

  19. Martínez-Muñoz, G., Suárez, A.: Switching class labels to generate classification ensembles. Pattern Recogn. 38(10), 1483–1494 (2005)

    Article  Google Scholar 

  20. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Pérez-Ortiz, M., Gutiérrez, P.A., Hervás-Martínez, C.: Projection based ensemble learning for ordinal regression. IEEE Trans. Cybern. 44(5), 681–694 (2014). http://www.uco.es/grupos/ayrna/elor2013

    Article  Google Scholar 

  22. Rennie, J.D.M.: Loss functions for preference levels: regression with discrete ordered labels. In: Proceedings of the IJCAI Multidisciplinary Workshop on Advances in Preference Handling, pp. 180–186 (2005)

    Google Scholar 

  23. Riccardi, A., Fernandez-Navarro, F., Carloni, S.: Cost-sensitive AdaBoost algorithm for ordinal regression based on extreme learning machine. IEEE Trans. Cybern. 44(10), 1898–1909 (2014)

    Article  Google Scholar 

  24. Sousa, R., Cardoso, J.S.: Ensemble of decision trees with global constraints for ordinal classification. In: 2011 11th International Conference on Intelligent Systems Design and Applications, pp. 1164–1169, November 2011

    Google Scholar 

  25. Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Antonio Gutiérrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gutiérrez, P.A., Pérez-Ortiz, M., Suárez, A. (2017). Class Switching Ensembles for Ordinal Regression. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10305. Springer, Cham. https://doi.org/10.1007/978-3-319-59153-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59153-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59152-0

  • Online ISBN: 978-3-319-59153-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics