Skip to main content

Using Deep Learning for Image Similarity in Product Matching

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2017)

Abstract

Product matching aims at disambiguating descriptions of products belonging to different websites in order to be able to recognize identical elements and to merge the content from those identical items. Most approaches face this matter applying various machine learning methods to textual product descriptions. Recently some authors are including information extracted from an image associated to a textual description of a product. Modern machine learning methods, such as content based information retrieval (CBIR) or deep learning, can be applied to this type of images since they can manage very large data sets for finding hidden structure within them, and for making accurate predictions. This information could boost the performance of the traditional textual matching but at the same time increase the computational complexity of the process. In this paper we review some CBIR and deep learning models and analyse the performance of these approaches when they are applied to images for product matching. The results obtained will help to introduce a combined classifier using textual and image information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: 2011 International Conference on Computer Vision, pp. 2548–2555 (2011)

    Google Scholar 

  2. Wan, J., et al.: Deep learning for content-based image retrieval: a comprehensive study. In: MM 2014 - Proceedings of the 2014 ACM Conference on Multimedia, pp. 157–166 (2014)

    Google Scholar 

  3. Zhang, D., Lu, G.: Study and evaluation of different Fourier methods for image retrieval. Image Vis. Comput. 23(1), 33–49 (2005)

    Article  Google Scholar 

  4. Müller, H., Müller, W., Squire, D.M., Marchand-Maillet, S., Pun, T.: Performance evaluation in content-based image retrieval: overview and proposals. Pattern Recogn. Lett. 22(5), 593–601 (2001)

    Article  MATH  Google Scholar 

  5. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  6. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  7. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  8. Zahn, C.T., Roskies, R.Z.: Fourier descriptors for plane closed curves. IEEE Trans. Comput. C–21(3), 269–281 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, D., Lu, G.: Enhanced generic Fourier descriptors for object-based image retrieval. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, vol. 4, pp. IV/3668–IV/3671 (2002)

    Google Scholar 

  10. Ahonen, T., Matas, J., He, C., Pietikäinen, M.: Rotation invariant image description with local binary pattern histogram fourier features. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 61–70. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02230-2_7

    Chapter  Google Scholar 

  11. He, Q., Ji, Z., Wu, Q.M.J.: Content-based image retrieval using generic fourier descriptor and Gabor filters. In: Proceedings of VISAPP 2008 - 3rd International Conference on Computer Vision Theory and Applications, vol. 1, pp. 525–528 (2008)

    Google Scholar 

  12. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  13. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 2, 1097–1105 (2012)

    Google Scholar 

  15. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: MM 2014 - Proceedings of the 2014 ACM Conference on Multimedia, pp. 675–678 (2014)

    Google Scholar 

  16. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  17. Leung, M.K.K., Xiong, H.Y., Lee, L.J., Frey, B.J.: Deep learning of the tissue-regulated splicing code. Bioinformatics 30(12), I121–I129 (2014)

    Article  Google Scholar 

  18. Xiong, H.Y.: The human splicing code reveals new insights into the genetic determinants of disease. Science 347, 6218 (2015)

    Article  Google Scholar 

  19. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Advances in Neural Information Processing Systems, pp. 153–160 (2007)

    Google Scholar 

  20. Hinton, G.E., Osindero, S., Teh, Y.-W: A fast learning algorithm for deep belief nets. In: Neural Computation, vol. 18, no. 7, pp. 1527–1554 (2006)

    Google Scholar 

  21. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 12 June 2015, vol. 07, pp. 1–9 (2015)

    Google Scholar 

  22. He, K., Zhang, X., Ren, S. Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778, January 2016

    Google Scholar 

  23. Singhal, A.: Modern information retrieval: a brief overview. IEEE Data Eng. Bull. 24(4), 35–43 (2001)

    Google Scholar 

  24. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets, 2nd edn. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  25. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  26. Chisten, P.: Data Matching: Concepts and Techniques for Record Linkage, Entity Resolution and Duplicate Detection. Springer, Heidelberg (2012)

    Book  Google Scholar 

  27. Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern Information Retrieval, vol. 463. ACM press, New York (1999)

    Google Scholar 

  28. Winkler, W.E.: Overview of record linkage and current research directions. In: Bureau of the Census (2006)

    Google Scholar 

  29. Thor, A.: Toward an adaptive string similarity measure for matching product offers. In: GI Jahrestagung (1), pp. 702–710 (2010)

    Google Scholar 

  30. Winkler, W.E.: String Comparator metrics and enhanced decision rules in the Fellegi-Sunter model of record linkage (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Rivas-Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rivas-Sánchez, M., De La Paz Guerrero-Lebrero, M., Guerrero, E., Bárcena-Gonzalez, G., Martel, J., Galindo, P.L. (2017). Using Deep Learning for Image Similarity in Product Matching. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10305. Springer, Cham. https://doi.org/10.1007/978-3-319-59153-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59153-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59152-0

  • Online ISBN: 978-3-319-59153-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics