Skip to main content

Deep Learning for Detecting Freezing of Gait Episodes in Parkinson’s Disease Based on Accelerometers

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2017)

Abstract

Freezing of gait (FOG) is one of the most incapacitating symptoms among the motor alterations of Parkinson’s disease (PD). Manifesting FOG episodes reduce patients’ quality of life and their autonomy to perform daily living activities, while it may provoke falls. Accurate ambulatory FOG assessment would enable non-pharmacologic support based on cues and would provide relevant information to neurologists on the disease evolution.

This paper presents a method for FOG detection based on deep learning and signal processing techniques. This is, to the best of our knowledge, the first time that FOG detection is addressed with deep learning. The evaluation of the model has been done based on the data from 15 PD patients who manifested FOG. An inertial measurement unit placed at the left side of the waist recorded tri-axial accelerometer, gyroscope and magnetometer signals. Our approach achieved comparable results to the state-of-the-art, reaching validation performances of 88.6% and 78% for sensitivity and specificity respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://futur.upc.edu/15557508.

References

  1. Ankit, K., et al.: Ask me anything: dynamic memory networks for natural language processing. CoRR abs/1506.07285 (2015)

    Google Scholar 

  2. Arias, P., et al.: Effect of rhythmic auditory stimulation on gait in parkinsonian patients with and without freezing of gait. PloS One 5(3), e9675 (2010)

    Article  Google Scholar 

  3. Bloem, B.R., et al.: Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov. Disord. 19(8), 871–884 (2004)

    Article  Google Scholar 

  4. Del Din, S., et al.: Free-living monitoring of Parkinson’s disease: lessons from the field. Mov. Disord. 31(9), 1293–1313 (2016)

    Article  Google Scholar 

  5. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(Jul), 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Aistats, vol. 9, pp. 249–256 (2010)

    Google Scholar 

  7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  8. Gregor, K., et al.: Draw: a recurrent neural network for image generation. arXiv preprint arXiv:1502.04623 (2015)

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014)

    Google Scholar 

  10. Kiros, R., et al.: Skip-thought vectors. In: 28th Advances in Neural Information Processing Systems, pp. 3294–3302 (2015)

    Google Scholar 

  11. Krizhevsky, A., et al.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  12. Mazilu, S., et al.: Online detection of freezing of gait with smartphones and machine learning techniques. In: 2012 6th International PervasiveHealth and Workshops, pp. 123–130 (2012)

    Google Scholar 

  13. Moore, S.T., MacDougall, H.G., Ondo, W.G.: Ambulatory monitoring of freezing of gait in Parkinson’s disease. J. Neurosci. Meth. 167(2), 340–348 (2008)

    Article  Google Scholar 

  14. Nieuwboer, A., Giladi, N.: Characterizing freezing of gait in Parkinson’s disease: models of an episodic phenomenon. Mov. Disord. 28(11), 1509–1519 (2013)

    Article  Google Scholar 

  15. Nussbaum, R.L., Ellis, C.E.: Alzheimer’s disease and Parkinson’s disease. New Engl. J. Med. 348(14), 1356–1364 (2003). pMID: 12672864

    Article  Google Scholar 

  16. Pringsheim, T., et al.: The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov. Disord. 29, 1583–1590 (2014)

    Article  Google Scholar 

  17. Rodríguez-Martín, D., Samà, A., et al.: Posture detection based on a waist-worn accelerometer: an application to improve freezing of gait detection in Parkinson’s disease patients. Recent Adv. Ambient Assist. Living-Bridging Assistive Technol. E-Health Personalized Health Care 20, 3 (2015)

    Google Scholar 

  18. Rodríguez-Martín, D., Samà, A., et al.: Comparison of features, window sizes and classifiers in detecting freezing of gait in patients with parkinson’s disease through a waist-worn accelerometer. In: Frontiers in Artificial Intelligence and Applications, vol. 288 (2016)

    Google Scholar 

  19. Rodríguez-Martín, D., Samà, A., Pérez-López, C., Català, A., Arostegui, J.M.M., Cabestany, J., Bayés, À., Alcaine, S., Mestre, B., Prats, A., et al.: Home detection of freezing of gait using support vector machines through a single waist-worn triaxial accelerometer. PLoS One 12(2), e0171764 (2017)

    Article  Google Scholar 

  20. Schaafsma, J.D., et al.: Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease. Eur. J. Neurol. 10(4), 391–398 (2003)

    Article  Google Scholar 

  21. Srivastava, N., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  23. Tanner, C.M., Goldman, S.M.: Epidemiology of Parkinson’s disease. Neurol. Clin. 14(2), 317–335 (1996)

    Article  Google Scholar 

  24. Tieleman, T., et al.: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4 (2012)

    Google Scholar 

  25. Venugopalan, S., et al.: Sequence to sequence - video to text. In: The ICCV (2015)

    Google Scholar 

  26. WHO: Neurological disorders: public health challenges (2006)

    Google Scholar 

  27. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention 2(3), 5 (2015) arXiv preprint arXiv:1502.03044

  28. Young, W.R., Shreve, L., Quinn, E.J., Craig, C., Bronte-Stewart, H.: Auditory cueing in Parkinson’s patients with freezing of gait. What matters most: action-relevance or cue-continuity? Neuropsychologia 87, 54–62 (2016)

    Article  Google Scholar 

  29. Zeiler: ADADELTA: an adaptive learning rate method. CoRR abs/1212.5701(2012)

    Google Scholar 

Download references

Acknowledgements

Part of this project was performed within the framework of the MASPARK project which is funded by La Fundació La Marató de TV3 20140431. The authors, thus, would like to acknowledge the contributions of their colleagues from MASPARK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julià Camps .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Camps, J. et al. (2017). Deep Learning for Detecting Freezing of Gait Episodes in Parkinson’s Disease Based on Accelerometers. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10306. Springer, Cham. https://doi.org/10.1007/978-3-319-59147-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59147-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59146-9

  • Online ISBN: 978-3-319-59147-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics