Skip to main content

Architecture for Neurological Coordination Tests Implementation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10306))

Abstract

This paper proposes a generic architecture for devising interactive neurological assessment tests, aimed at being implemented on a touchscreen device. The objective is both to provide a set of software primitives that allow the modular implementation of tests, and to contribute to the standardization of test protocols. Although our original goal was the application of machine learning methods to the analysis of test data, it turned out that the construction of such framework was a pre-requisite to collect enough data with the required levels of accuracy and reproducibility. In the proposed architecture, tests are defined by a set of stimuli, responses, feedback information, and execution control procedures. The presented definition has allowed for the implementation of a particular test, the Finger-Nose-Finger, that will allow the exploitation of data with intelligent techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gagnon, C., Mathieu, J., Desrosiers, J.: Standardized finger-nose test validity for coordination assessment in an ataxic disorder. Can. J. Neurol. Sci. Le Journal Canadien Des Sciences Neurologiques 31(4), 484–489 (2004)

    Article  Google Scholar 

  2. Gavriel, C., Thomik, A.A.C., Lourencco, P.R., Nageshwaran, S., Athanasopoulos, S., Sylaidi, A., Festenstein, R., Faisal, A.: Kinematic body sensor networks and behaviourmetrics for objective efficacy measurements in neurodegenerative disease drug trials. In: 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 1–6 (2015)

    Google Scholar 

  3. Harish, K., Rao, M.V., Borgohain, R., Sairam, A., Abhilash, P.: Tremor quantification and its measurements on parkinsonian patients. In: International Conference on Biomedical and Pharmaceutical Engineering, ICBPE 2009, pp. 1–3 (2009)

    Google Scholar 

  4. Lefebvre, O., Riba, P., Gagnon-Marchand, J., Fournier, C., Fornes, A., Llados, J., Plamondon, R.: Monitoring neuromotricity on-line: a cloud computing approach. In: Rémi, C., Prévost, L., Anquetil, E. (eds.) 17th Biennial Conference of the International Graphonomics Society, Drawing, Handwriting Processing Analysis: New Advances and Challenges, Pointe-à-Pitre, Guadeloupe (2015)

    Google Scholar 

  5. Lennon, T., Bernier, T., Tamayo, D., Goldberg, C., Mankodiya, K.: Multi-sensory system for monitoring dyskinesia in movement disorders. In: 2015 41st Annual Northeast Biomedical Engineering Conference (NEBEC), pp. 1–2. IEEE (2015)

    Google Scholar 

  6. Memedi, M., Nyholm, D., Johansson, A., Palhagen, S., Willows, T., Widner, H., Linder, J., Westin, J.: Validity and responsiveness of at-home touch-screen assessments in advanced Parkinson’s disease. IEEE J. Biomed. Health Inf. 19(6), 1829–1834 (2015)

    Article  Google Scholar 

  7. Notermans, N.C., van Dijk, G.W., van der Graaf, Y., van Gijn, J., Wokke, J.H.: Measuring ataxia: quantification based on the standard neurological examination. J. Neurol. Neurosurg. Psychiatry 57(1), 22–26 (1994)

    Article  Google Scholar 

  8. Park, K., Lim, S.: A multipurpose smart activity monitoring system for personalized health services. Inf. Sci. 314, 240–254 (2015)

    Article  Google Scholar 

  9. Paschou, M., Sakkopoulos, E., Tsakalidis, A.: easyHealthApps: e-Health apps dynamic generation for smartphones & tablets. J. Med. Syst. 37(3), 9951 (2013)

    Article  Google Scholar 

  10. Pullman, S.L.: Spiral analysis: a new technique for measuring tremor with a digitizing tablet. Mov. Disord. 13(Suppl. 3), 85–89 (1998)

    Google Scholar 

  11. Salarian, A., Russmann, H., Wider, C., Burkhard, P.R., Vingerhoets, F.J.G., Aminian, K.: Quantification of tremor and bradykinesia in Parkinson’s disease using a novel ambulatory monitoring system. IEEE Trans. Bio-med. Eng. 54(2), 313–322 (2007)

    Article  Google Scholar 

  12. Say, M.J., Jones, R., Scahill, R.I., Dumas, E.M., Coleman, A., Santos, R.C.D., Justo, D., Campbell, J.C., Queller, S., Shores, E.A., Tabrizi, S.J., Stout, J.C.: TRACK-HD investigators: visuomotor integration deficits precede clinical onset in Huntington’s disease. Neuropsychologia 49(2), 264–270 (2011)

    Article  Google Scholar 

  13. Surangsrirat, D., Thanawattano, C.: Android application for spiral analysis in Parkinson’s Disease. In: 2012 Proceedings of IEEE Southeastcon, pp. 1–6. IEEE (2012)

    Google Scholar 

  14. Velázquez-Mariño, M., Atencia, M., García-Bermúdez, R., Pupo-Ricardo, D., Becerra-García, R., Velázquez-Pérez, L.: Contribution analysis of extracted variables from Finger-Nose-Finger test to the classification of SCA2 patients. In: III International Conference on Informatics and Computer Sciences, Havana, Cuba (2016)

    Google Scholar 

  15. Velazquez-Perez, L., de la Hoz-Oliveras, J., Perez-Gonzalez, R., Hechavarria, P.R., Herrera-Dominguez, H.: Quantitative evaluation of disorders of coordination in patients with Cuban type 2 spinocerebellar ataxia. Revista De Neurologia 32(7), 601–606 (2001)

    Google Scholar 

  16. Velázquez-Mariño, M., Atencia, M., García-Bermúdez, R., Pupo-Ricardo, D., Becerra-García, R., Pérez, L.V., Sandoval, F.: Cluster analysis of Finger-to-Nose test for spinocerebellar ataxia assessment. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2015. LNCS, vol. 9095, pp. 524–535. Springer, Cham (2015). doi:10.1007/978-3-319-19222-2_44

    Chapter  Google Scholar 

  17. Westin, J., Dougherty, M., Nyholm, D., Groth, T.: A home environment test battery for status assessment in patients with advanced Parkinson’s disease. Comput. Methods Programs Biomed. 98(1), 27–35 (2010)

    Article  Google Scholar 

  18. World Health Organization: mHealth: new horizons for health through mobile technologies. In: Second Global Survey on eHealth, Geneva (2011)

    Google Scholar 

Download references

Acknowledgement

This work has been partially supported by the Universidad de Málaga, as well as the Universidad de Holguín through the joint project titled “Mejora del equipamiento para la evaluación de la rehabilitación de enfermedades neurológicas de especial prevalencia en el oriente de Cuba”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Atencia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Velázquez-Mariño, M., Atencia, M., García-Bermúdez, R., Sandoval, F., Pupo-Ricardo, D. (2017). Architecture for Neurological Coordination Tests Implementation. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10306. Springer, Cham. https://doi.org/10.1007/978-3-319-59147-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59147-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59146-9

  • Online ISBN: 978-3-319-59147-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics