Skip to main content

Double Peeling Mechanism Inspired by Biological Adhesive Systems: An Experimental Study

  • Chapter
  • First Online:
Bio-inspired Structured Adhesives

Part of the book series: Biologically-Inspired Systems ((BISY,volume 9))

  • 1452 Accesses

Abstract

In this study, we have performed, for the first time, a detailed experimental test of the double peeling configuration, including the role of pre-strain and different initial peeling angles. Double peeling systems consist of two adhesive tapes in contact with a substrate and are loaded at a common hinge. Such systems are widely observed in the hairy attachment pads of insects, arachnids, and reptiles. It was previously shown that the antagonistic work of such opposing tape-like contacts lead to enhanced, stable, and robust attachment, if compared to the single peeling configuration. The obtained results are in very good agreement with recent theoretical models and may help explaining the functional mechanisms of biological attachment systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Gorb, Attachment Devices of Insect Cuticle (Kluwer Academic Publishers, London, 2001)

    Google Scholar 

  2. S.N. Gorb, R.G. Beutel, Naturwissenschaften 88, 530 (2001)

    Article  Google Scholar 

  3. S.N. Gorb, Am. Entomol. 51, 31 (2005)

    Article  Google Scholar 

  4. J.O. Wolff, S.N. Gorb, Attachment Structures and Adhesive Secretions in Arachnids (Springer, Berlin, 2016)

    Book  Google Scholar 

  5. A. Haase, Arch. Naturgesch. 66, 321 (1900)

    Google Scholar 

  6. R. Ruibal, V. Ernst, J. Morphol. 117, 271 (1965)

    Article  Google Scholar 

  7. U. Hiller, Z. Morphol, Tiere 62, 307 (1968)

    Article  Google Scholar 

  8. D.J. Irschick, C.C. Austin, K. Petren, R.N. Fisher, J.B. Losos, O. Ellers, Biol. J. Linn. Soc. 59, 21 (1996)

    Article  Google Scholar 

  9. K. Autumn, P.H. Niewiarowski, J.B. Puthoff, Annu. Rev. Ecol. Evol. Syst. 45, 445 (2014)

    Article  Google Scholar 

  10. M. Varenberg, N.M. Pugno, S.N. Gorb, Soft Matter 6, 3269 (2010)

    Article  Google Scholar 

  11. K. Kendall, J. Phys. D Appl. Phys. 8, 1449 (1975)

    Article  Google Scholar 

  12. E. Arzt, S. Gorb, R. Spolenak, Proc. Natl. Acad. Sci. U.S.A. 100, 10603 (2003)

    Article  Google Scholar 

  13. N. Pugno, S. Gorb, in Proceedings of the 12th international conference on fracture, July 1217, Ottawa, Canada, USA (2009)

    Google Scholar 

  14. N. Pugno, Int. J. Fract. 171, 185 (2011)

    Article  Google Scholar 

  15. A.N. Gent, S. Kaang, J. Appl. Polym. Sci. 32, 4689 (1986)

    Article  Google Scholar 

  16. J.G. Williams, Int. J. Fract. 87, 265 (1997)

    Article  Google Scholar 

  17. K.T. Wan, J. Adhes. 70, 197 (1999)

    Article  Google Scholar 

  18. A. Molinari, G. Ravichandran, J. Adhes. 84, 961 (2008)

    Article  Google Scholar 

  19. M.R. Begley, R.R. Collino, J.N. Israelachvili, R.M. McMeeking, J. Mech. Phys. Solids 61, 1265 (2013)

    Article  Google Scholar 

  20. Z. Sun, K.T. Wan, D.A. Dillard, Int. J. Solids Struct. 41, 717 (2004)

    Article  Google Scholar 

  21. B. Chen, P. Wu, H. Gao, J. R. Soc. Interface 6, 529 (2009)

    Article  Google Scholar 

  22. D. Labonte, W. Federle, J. R. Soc. Interface 13, 20160373 (2016)

    Article  Google Scholar 

  23. K. Kendall, J. Phys. D Appl. Phys. 11, 1519 (1978)

    Article  Google Scholar 

  24. B. Chen, P.D. Wu, H. Gao, Proc. R. Soc. A 464, 1639 (2008)

    Article  Google Scholar 

  25. F. Bosia, S. Colella, V. Mattoli, B. Mazzolai, N.M. Pugno, RSC Adv. 4, 25447 (2014)

    Article  Google Scholar 

  26. A. Pantano, N.M. Pugno, S.N. Gorb, Int. J. Fract. 171, 169 (2011)

    Article  Google Scholar 

  27. S. Xia, L. Ponson, Phys. Rev. Lett. 108, 196101 (2012)

    Article  Google Scholar 

  28. Z. Gu, S. Li, F. Zhang, S. Wang, Adv. Sci. 3, 1500327 (2016)

    Article  Google Scholar 

  29. L. Afferrante, G. Carbone, G. Demelio, N. Pugno, Tribol. Lett. 52, 439 (2013)

    Article  Google Scholar 

  30. C. Putignano, L. Afferrante, L. Mangialardi, G. Carbone, Beilstein J. Nanotechnol. 5, 1725 (2014)

    Article  Google Scholar 

  31. L. Heepe, S.N. Gorb, Annu. Rev. Mater. Res. 44, 173 (2014)

    Article  Google Scholar 

  32. S. Gorb, M. Varenberg, A. Peressadko, J. Tuma, J. R. Soc. Interface 4, 271 (2007)

    Article  Google Scholar 

  33. K. Dening, L. Heepe, L. Afferrante, G. Carbone, S.N. Gorb, Appl. Phys. A 116, 567 (2014)

    Article  Google Scholar 

  34. L. Heepe, A.E. Kovalev, A.E. Filippov, S.N. Gorb, Phys. Rev. Lett. 111, 104301 (2013)

    Article  Google Scholar 

  35. X. Jin, J. Strueben, L. Heepe, A. Kovalev, Y.K. Mishra, R. Adelung, S.N. Gorb, A. Staubitz, Adv. Mater. 24, 5676 (2012)

    Article  Google Scholar 

  36. L. Heepe, G. Carbone, E. Pierro, A.E. Kovalev, S.N. Gorb, Appl. Phys. Lett. 104, 011906 (2014)

    Article  Google Scholar 

  37. S.N. Gorb, in Handbook of Adhesion Technology, ed. by L.F.M. da Silva, A. Öchsner, R.D. Adams (Springer, Berlin, 2011)

    Google Scholar 

  38. Q.H. Cheng, B. Chen, H.J. Gao, Y.W. Zhang, J. R. Soc. Interface 9, 283 (2012)

    Article  Google Scholar 

  39. A. Filippov, V.L. Popov, S.N. Gorb, J. Theor. Biol. 276, 126 (2011)

    Article  Google Scholar 

  40. K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, R.J. Full, Nature 405, 681 (2002)

    Google Scholar 

  41. H. Gao, X. Wang, H. Yao, S.N. Gorb, E. Arzt, Mech. Mater. 37, 275 (2005)

    Article  Google Scholar 

  42. G. Huber, S.N. Gorb, R. Spolenak, E. Arzt, Biol. Lett. 1, 2 (2005)

    Article  Google Scholar 

  43. K. Autumn, A. Dittmore, D. Santos, M. Spenko, M. Cutkosky, J. Exp. Biol. 209, 3569 (2006)

    Article  Google Scholar 

  44. Y. Tian, N. Pesika, H. Zeng, K. Rosenberg, B. Zhao, P. McGuiggan, K. Autumn, J. Isralachvili, Proc. Natl. Acad. Sci. U.S.A. 103, 19230 (2006)

    Google Scholar 

  45. S. Niederegger, S. Gorb, Y. Jiao, J. Comp. Physiol. A 187, 961 (2002)

    Article  Google Scholar 

  46. S. Niederegger, S.N. Gorb, J. Comp. Physiol. A 192, 1223 (2006)

    Article  Google Scholar 

  47. E. Wohlfart, J.O. Wolff, E. Arzt, S.N. Gorb, J. Exp. Biol. 217, 222 (2014)

    Article  Google Scholar 

  48. V.B. Wigglesworth, J. Exp. Biol. 129, 373 (1987)

    Google Scholar 

  49. A.P. Russell, J. Zool. Lond. 176, 437 (1975)

    Article  Google Scholar 

Download references

Acknowledgements

This book chapter is based on the original publication L. Heepe, S. Raguseo, and S.N. Gorb, An experimental study of double peeling mechanism inspired by biological adhesive systems, Appl. Phys. A, DOI:10.1007/s00339-016-0753-9, (2017), with permission of Springer. Extensive work of V. Kastner on the preliminary experiments is greatly acknowledged. We would like to thank E. Appel for assistance with Fig. 7.2a. We would like to thank A. Kovalev for helpful comments on the manuscript. This work was partially supported by CARTRIB Project of The Leverhulme Trust (S.N. Gorb) by projects CP 1550 and 1623 by a grant of the Cluster of Excellence 80 The Future Ocean (L. Heepe and S.N. Gorb). The Future Ocean is funded within the framework of the Excellence Initiative by the Deutsche Forschungsgemeinschaft (DFG) on behalf of the German federal and state governments. S. Raguseo greatly acknowledges support of the Erasmus + programme of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Heepe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Heepe, L., Raguseo, S., Gorb, S.N. (2017). Double Peeling Mechanism Inspired by Biological Adhesive Systems: An Experimental Study. In: Heepe, L., Xue, L., Gorb, S. (eds) Bio-inspired Structured Adhesives. Biologically-Inspired Systems, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-59114-8_7

Download citation

Publish with us

Policies and ethics