Skip to main content

Paramagnetic Resonance of High-Spin Co(II) in Biologically-Relevant Environments: Models to Metalloproteins

  • Chapter
  • First Online:
Future Directions in Metalloprotein and Metalloenzyme Research

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 33))

Abstract

The use of Co(II) as a spectroscopic surrogate for Zn(II) is now a well-established protocol in metallobiochemistry. The d 7 Co(II) ion usually adopts a high-spin (S = 3/2) configuration and a coordination geometry similar to the native Zn(II) ion, often returning an active enzyme. However, the complicated electronic structure that gives rise to easily detectable signals in a wide array of optical and magnetic spectroscopies simultaneously hampers data interpretation in terms of structure. Nowhere is this more evident than in the EPR spectra of Co(II) complexes, particularly at X-band. Some alternatives to common practice in the assignment and simulation of high-spin Co(II) EPR are presented. Our intent is to shed light on the sources of spectral complexity, and address some of the remaining issues confounding the successful application of more advanced techniques, such as ENDOR (CW or pulsed) and ESEEM. The importance of spin sub-level mixing into the magnetic ground state, leading to possible intensity stealing and the appearance of signals from both spin doublets, is discussed in terms of available zero-field splitting data, and the identity of the ground doublet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vallee BL, Rupley JA, Coombs TL, Neurath H (1958) The release of zinc from carboxyeptidase and its replacement. J Am Chem Soc 80:4750–4751

    Article  CAS  Google Scholar 

  2. Maret W, Vallee BL (1993) Cobalt as probe and label of proteins. In: Methods in enzymology, vol 226. Academic, New York, NY, pp 52–71

    Google Scholar 

  3. Schenk G, Tierney DL (2014) X-ray absorption spectroscopy of dinuclear hydrolases. Biophys J 107:1263–1272

    Article  PubMed  PubMed Central  Google Scholar 

  4. Larrabee JA, Alessi CM, Asiedu ET, Cook JO, Hoerning KR, Klingler LJ, Okin GS, Santee SG, Volkert TL (1997) Magnetic circular dichroism spectroscopy as a probe of geometric and electronic structure of cobalt(II)-substituted proteins: ground-state zero-field splitting as a coordination number indicator. J Am Chem Soc 119:4182–4196

    Article  CAS  Google Scholar 

  5. Bennett B (2010) EPR of cobalt-substituted zinc enzymes. In: Bological magnetic resonance, vol 29. Springer, New York, NY, pp 345–370

    Google Scholar 

  6. Bertini I, Luchinat C, Parigi G (2001) Solution NMR of paramagnetic molecules. Amsterdam, Elsevier

    Google Scholar 

  7. Walsby CJ, Krepkiy D, Petering DH, Hoffman BM (2003) Cobalt-substituted zinc finger 3 of transcription factor IIIA: interactions with cognate DNA detected by 31P ENDOR spectroscopy. J Am Chem Soc 125:7502–7503

    Article  CAS  PubMed  Google Scholar 

  8. Myers WK, Duesler EN, Tierney DL (2008) Integrated paramagnetic resonance of high-spin Co(II) in axial symmetry: chemical separation of dipolar and contact electron-nuclear couplings. Inorg Chem 47:6701–6710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Myers WK, Scholes CP, Tierney DL (2009) Anisotropic fermi couplings due to large unquenched orbital angular momentum: Q-band 1H, 14N and 11B ENDOR of bis(trispyrazolylborate) cobalt(II). J Am Chem Soc 131:10421–10429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krzystek J, Zvyagin SA, Ozarowski A, Fiedler AT, Brunold TC, Telser J (2004) Definitive spectroscopic determination of zero-field splitting in high-spin cobalt(II). J Am Chem Soc 126:2148–2155

    Article  CAS  PubMed  Google Scholar 

  11. Krzystek J, Zvyagin SA, Ozarowski A, Trofimenko S, Telser J (2006) Tunable-frequency high-field electron paramagnetic resonance. J Magn Reson 178:174–183

    Article  CAS  PubMed  Google Scholar 

  12. Lawrence J, Beedle CC, Yang E-C, Ma J, Hill S, Hendrickson DN (2007) High frequency electron paramagnetic resonance (HFEPR) study of a high spin Co(II) complex. Polyhedron 26:2299–2303

    Article  CAS  Google Scholar 

  13. Maganas D, Milikisyants S, Rijnbeek JMA, Sottini S, Levesanos N, Kyritsis P, Groenen EJJ (2010) A multifrequency high-field electron paramagnetic resonance study of CoIIS4 coordination. Inorg Chem 49:595–605

    Article  CAS  PubMed  Google Scholar 

  14. Krzystek J, Swenson DC, Zvyagin SA, Smirnov D, Ozarowski A, Telser J (2010) Cobalt(II) “scorpionate” complexes as models for cobalt-substituted zinc enzymes: electronic structure investigation by high-frequency and field electron paramagnetic resonance spectroscopy. J Am Chem Soc 132:5241–5253

    Article  CAS  PubMed  Google Scholar 

  15. Idesicova M, Titis J, Krzystek J, Boca R (2013) Zero-field splitting in pseudotetrahedral Co(II) complexes: a magnetic, high-frequency and -field EPR, and computational study. Inorg Chem 52:9409–9417

    Article  CAS  PubMed  Google Scholar 

  16. Semproni SP, Milsmann C, Chirik PJ (2014) Four-coordinate cobalt pincer complexes: electronic structure studies and ligand modification by homolytic and heterolytic pathways. J Am Chem Soc 136:9211–9224

    Article  CAS  PubMed  Google Scholar 

  17. Chiang L, Allan LEN, Alcantara J, Wang MCP, Storr T, Shaver MP (2014) Tuning ligand electronics and peripheral substitution on cobalt salen complexes: structure and polymerisation activity. Dalton Trans 43:4295–4304

    Article  CAS  PubMed  Google Scholar 

  18. Esswein AJ, Surendranath Y, Reecea SY, Nocera DG (2011) Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters. Energy Environ Sci 4:499–504

    Article  CAS  Google Scholar 

  19. Singh A, Spiccia L et al (2013) Coord Chem Rev 257:2607–2622

    Article  CAS  Google Scholar 

  20. Bloomfield AJ, Sheehan SW, Collom SL, Crabtree RH, Anastas PT (2014) A heterogeneous water oxidation catalyst from dicobalt octacarbonyl and 1,2-bis(diphenylphosphino) ethane. New J Chem 38:1540–1545

    Article  CAS  Google Scholar 

  21. Ruamps R, Batchelor LJ, Guillot R, Zakhia G, Barra A-L, Wernsdorfer W, Guihery N, Mallah T (2014) Ising-type magnetic anisotropy and single molecule magnet behaviour in mononuclear trigonal bipyramidal Co(II) complexes. Chem Sci 5:3418–3424

    Article  CAS  Google Scholar 

  22. Li J, Zhang L, Xu G-C, Yu W-X, Jia D-Z (2014) A carbohydrazone based tetranuclear Co(II) complex: self-assembly and magnetic property. Inorg Chem Comm 45:40–43

    Article  Google Scholar 

  23. Amjad A, Minguez Espallargas G, Liu J, Clemente-Juan JM, Coronado E, Hill S, del Barco E (2013) Single-crystal EPR spectroscopy of a Co(II) single-chain magnet. Polyhedron 66:218–221

    Article  CAS  Google Scholar 

  24. Chorazy S, Nakabayashi K, Imoto K, Mlynarski J, Sieklucka B, Ohkoshi S-I (2012) Conjunction of chirality and slow magnetic relaxation in the supramolecular network constructed of crossed cyano-bridged CoII-WV molecular chains. J Am Chem Soc 134:16151–16154

    Article  CAS  PubMed  Google Scholar 

  25. Condon EU, Shortley GH (1935) The theory of atomic spectra. Cambridge University Press, London

    Google Scholar 

  26. Griffith JS (1961) The theory of transition metal ions. Cambridge University Press, London

    Google Scholar 

  27. Ballhausen CJ (1962) Introduction to ligand fields. McGraw-Hill, New York, NY

    Google Scholar 

  28. Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  29. Lever ABP (1984) Inorganic electronic spectroscopy. Elsevier, Amsterdam

    Google Scholar 

  30. Mabbs FE, Collison D (1992) Electron paramagnetic resonance of d transition metal compounds. Elsevier, Amsterdam

    Google Scholar 

  31. Drago RS (1992) Physical methods for chemists. Surfside, Gainesville, FL

    Google Scholar 

  32. Shriver DF, Atkins P, Langford CH (1994) Inorganic chemistry, 2nd edn. W.H. Freeman, New York, NY

    Google Scholar 

  33. Orgel LE (1955) Spectra of transition-metal complexes. J Chem Phys 23:1004–1014

    Article  CAS  Google Scholar 

  34. Jesson JP (1966) Optical and paramagnetic resonance spectra of some trigonal Co(II) chelates. J Chem Phys 45:1049–1056

    Article  CAS  Google Scholar 

  35. Tierney DL (2012) Jahn-Teller dynamics in a series of high-symmetry Co(II) chelates determine paramagnetic relaxation enhancements. J Phys Chem A 116:10959–10972

    Article  CAS  PubMed  Google Scholar 

  36. Banci L, Bencini A, Benelli C, Gatteschi D (1980) ESR spectra of low symmetry high spin cobalt(II) complexes. 9. Theoretical considerations on tetrahedral and five coordinate complexes. Nouv J Chim 4:593–598

    CAS  Google Scholar 

  37. Pilbrow JR (1978) Effective g values for S = 3/2 and S = 5/2. J Magn Reson 31:479–490

    CAS  Google Scholar 

  38. Bencini A, Gatteschi D (1977) Electron spin resonance spectra of low-symmetry pseudotetrahedral high-spin cobalt(II) complexes. Tetra-n-butylammonium tribromo(quinoline)cobaltate(II). Inorg Chem 16:2141–2142

    Article  CAS  Google Scholar 

  39. Bencini A, Benelli C, Gatteschi D, Zanchini C (1979) ESR spectra of low-symmetry high-spin cobalt(II) complexes. 3. Square-pyramidal nitratotetrakis(methyldiphenylarsine oxide)cobalt(II) nitrate. Inorg Chem 18:2526–2528

    Article  CAS  Google Scholar 

  40. Bencini A, Benelli C, Gatteschi D, Zanchini C (1979) ESR spectra of low-symmetry high-spin cobalt(II) complexes. 2. Pseudotetrahedral dichlorobis(triphenylphosphine oxide)cobalt(II). Inorg Chem 18:2137–2140

    Article  CAS  Google Scholar 

  41. Bencini A, Benelli C, Gatteschi D, Zanchini C (1980) ESR spectra of low symmetry high spin cobalt(II) complexes. 8. Observation of ESR spectra of dichloro-tetrakispyrazole cobalt(II) doped into paramagnetic nickel(II) analog. Inorg Chim Acta 45:L127–L128

    Article  CAS  Google Scholar 

  42. Bencini A, Benelli C, Gatteschi D, Zanchini C (1980) ESR spectra of low-symmetry high-spin cobalt(II) complexes. 7. Trigonal-bipyramidal pentakis(picoline N-oxide)cobalt(II) perchlorate. Inorg Chem 19:3839–3841

    Article  CAS  Google Scholar 

  43. Bencini A, Benelli C, Gatteschi D, Zanchini C (1980) ESR spectra of low-symmetry high-spin cobalt(II) complexes. 6. 6-Methylquinoline, pyridine, and water adducts of cobalt(II) acetylacetonate. Inorg Chem 19:3027–3030

    Article  CAS  Google Scholar 

  44. Bencini A, Benelli C, Gatteschi D, Zanchini C (1980) ESR spectra of low-symmetry high-spin cobalt(II) complexes. Part 5. Pseudotetrahedral tetra-n-butylammonium tribromo(quinoline) cobaltate(II) and the calculation of the A2 tensor. J Mol Struct 60:401–404

    Article  CAS  Google Scholar 

  45. Bencini A, Benelli C, Gatteschi D, Zanchini C (1980) Electron spin resonance spectra of low-symmetry high-spin cobalt(II) complexes. 4. Tetragonal-octahedral dichlorotetrakis(pyridine)- and dichlorotetrakis(pyrazole)cobalt(II). Inorg Chem 19:1301–1304

    Article  CAS  Google Scholar 

  46. Benelli C, Gatteschi D (1982) ESR spectra of low-symmetry high-spin cobalt(II) complexes. 10. Five-coordinated trigonal-bipyramidal complexes. Inorg Chem 21:1788–1790

    Article  CAS  Google Scholar 

  47. Tierney DL, Rocklin AM, Lipscomb JD, Que L Jr, Hoffman BM (2005) ENDOR studies of the ligation and structure of the non-heme iron site in ACC oxidase. J Am Chem Soc 127:7005–7013

    Article  CAS  PubMed  Google Scholar 

  48. Miller JC, Abernathy SM, Lohr LL, Sharp RR (2000) NMR paramagnetic relaxation enhancement: ZFS-limit behavior for S = 3/2. J Phys Chem A 104:9481–9488

    Article  CAS  Google Scholar 

  49. Makinen MW, Kuo LC, Yim MB, Wells GB, Fukuyama JM, Kim JE (1985) Ground term splitting of high-spin cobalt2+ as a probe of coordination structure. 1. Dependence of the splitting on coordination geometry. J Am Chem Soc 107:5245–5255

    Article  CAS  Google Scholar 

  50. Yim MB, Kuo LC, Makinen MW (1982) Determination of the zero-field splitting constants of high-spin metalloproteins by a continuous wave microwave saturation technique. J Magn Reson 46:247–256

    CAS  Google Scholar 

  51. Orbach R (1961) The theory of spin-lattice relaxation in paramagnetic salts. Proc Phys Soc Lond 77:821–826

    Article  CAS  Google Scholar 

  52. Daumann LJ, Comba P, Larrabee JA, Schenk G, Stranger R, Cavigliasso G, Gahan LR (2013) Synthesis, magnetic properties, and phosphoesterase activity of dinuclear cobalt(II) complexes. Inorg Chem 52:2029–2043

    Article  CAS  PubMed  Google Scholar 

  53. Daumann LJ, Larrabee JA, Comba P, Schenk G, Gahan LR (2013) Dinuclear cobalt(II) complexes as metallo-β-lactamase mimics. Eur J Inorg Chem 17:3082–3089

    Article  Google Scholar 

  54. Vallejo J, Fortea-Perez FR, Pardo E, Benmansour S, Castro I, Krzystek J, Armentanoc D, Cano J (2016) Guest-dependent single-ion magnet behaviour in a cobalt(II) metal–organic framework. Chem Sci 7:2286–2293

    Article  CAS  Google Scholar 

  55. Baum RR, Myers WK, Greer SM, Breece RM, Tierney DL (2016) The original Co(II) heteroscorpionates revisited: on the EPR of pseudotetrahedral Co(II). Eur J Inorg Chem 2016:2641–2647

    Article  CAS  Google Scholar 

  56. Jesson JP, Trofimenko S, Eaton DR (1967) Spectra and structure of some transition metal poly(1-pyrazolyl)borates. J Am Chem Soc 89:3148–3158

    Article  CAS  Google Scholar 

  57. Guggenberger LJ, Prewitt CT, Meakin P, Trofimenko S, Jesson JP (1973) Crystal structure and single-crystal electron paramagnetic resonance data for bis[dihydrobis(1-pyrazolyl)borato] cobalt(II). Inorg Chem 12:508–515

    Article  CAS  Google Scholar 

  58. Marts AR, Greer SM, Whitehead DR, Woodruff TM, Breece RM, Shim SW, Oseback SN, Papish ET, Jacobsen FE, Cohen SM, Tierney DL (2011) Dual mode EPR studies of a kramers ion: high-spin Co(II) in 4-, 5- and 6-coordination. Appl Magn Reson 40:501–511

    Article  CAS  Google Scholar 

  59. Hendrich MP, Debrunner PG (1989) Integer spin electron paramagnetic resonance of iron proteins. Biophys J 56:489–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Oseback SN, Shim SW, Kumar M, Greer SM, Gardner SR, Lemar KM, DeGregory P, Papish ET, Tierney DL, Zeller M, Yap GPA (2012) Crowded bis ligand complexes of TtzPh,Me with first row transition metals rearrange due to ligand field effects: structural and electronic characterization (TtzPh,Me = tris(3-phenyl-5-methyl-1,2,4-triazolyl)borate). Dalton Trans 41:2774–2787

    Article  CAS  PubMed  Google Scholar 

  61. Grubel K, Marts AR, Greer SM, Tierney DL, Allpress CJ, Anderson SN, Laughlin BJ, Smith RC, Arif AM, Berreau LM (2012) Photoinitiated dioxygenase-type reactivity of open-shell 3d divalent metal flavonolato complexes. Eur J Inorg Chem 2012:4750–4757

    Article  CAS  Google Scholar 

  62. Kang PC, Eaton GR, Eaton SS (1994) Pulsed electron paramagnetic resonance of high-spin cobalt(II) complexes. Inorg Chem 33:3660–3665

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation (CHE-0518189, CHE-0964806, CHE-0909985 and CHE-1152755 to D.L.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Tierney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Baum, R.R., James, C.D., Tierney, D.L. (2017). Paramagnetic Resonance of High-Spin Co(II) in Biologically-Relevant Environments: Models to Metalloproteins. In: Hanson, G., Berliner, L. (eds) Future Directions in Metalloprotein and Metalloenzyme Research. Biological Magnetic Resonance, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-59100-1_3

Download citation

Publish with us

Policies and ethics