Skip to main content

Structures, Electronics and Reactivity of Copper(II) Complexes of the Cyclic Pseudo-Peptides of the Ascidians

  • Chapter
  • First Online:
Book cover Future Directions in Metalloprotein and Metalloenzyme Research

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 33))

Abstract

Cyclic pseudo-peptides, derived from marine metabolites found in the genus Lissoclinum bistratum and Lissoclinum patella and produced by their symbiont Prochloron have attracted scientific interest in the last two decades. Their structural properties and solution dynamics were analyzed in detail, elaborate synthetic procedures for the natural products and synthetic derivatives were developed, the biosynthetic pathways were studied and it now is possible to produce them biosynthetically. A major focus in the last decade was on their CuII – more recently also on the ZnII – coordination chemistry, as a number of studies have indicated that dinuclear CuII and ZnII complexes of cyclic peptides may be involved in the ascidians’ metabolism. Solution equilibria of various derivatives of the synthetic ligands in presence of CuII were studied thoroughly and the solution structures were determined by EPR spectroscopy and spectra simulation in combination with molecular mechanics and DFT calculations. Recent in vitro studies indicate that the dicopper(II) complexes are phosphatase, glycosidase, lactamase and very efficient carbonic anhydrase model systems. First in vivo studies with a patellamide derivative containing an appended fluorescence tag suggest that CuII is coordinated to the patellamides in the Prochloron cells.

Part of this chapter is reproduced from the PhD thesis of A.E.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eisenschmidt A (2016) Dinuclear copper(II) patellamide complexes: studies on their potential hydrolase-like activity and in vivo stabilities, PhD thesis. Heidelberg University, Heidelberg

    Google Scholar 

  2. Mayer H (2016) Frankfurter Allgemeine Zeitung (Feuilleton) 31:08

    Google Scholar 

  3. Kaim W, Schwederski B (2005) Bioanorganische Chemie—Zur Funktion chemischer Elemente in Lebensprozessen, 4th edn. Teubner, Wiesbaden

    Google Scholar 

  4. Kühl M, Behrendt L, Trampe E, Qvortrup K, Schreiber U, Borisov SM, Klimant I, Larkum AW (2012) Front Microbiol 3:402

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mereschkowsky K (1910) Biol Centralbl 30:353

    Google Scholar 

  6. Schwartz W (1973) Z Allg Mikrobiol 13:186

    Article  Google Scholar 

  7. Whatley JM, John P, Whatley FR (1979) Proc Roy Soc London Series B Biol Sc 204:165

    Article  CAS  Google Scholar 

  8. Lewin RA, Cheng L (1989) Prochloron: a microbial enigma. Chapman and Hall, London

    Book  Google Scholar 

  9. Lewin RA, Withers NW (1975) Nature 256:735

    Article  CAS  Google Scholar 

  10. Newcomb EH, Pugh TD (1975) Nature 235:533

    Article  Google Scholar 

  11. Hirose E, Neilan BA, Schmidt EW, Murakami A (2009) A enigmatic life and evolution of prochloron and realted cyanobacteria inhabitin colonial ascidians. Nova Science Publishers, Inc., Hauppauge, New York

    Google Scholar 

  12. Donia MS, Fricke WF, Partensky F, Cox J, Elshahawi SI, White JR, Phillippy AM, Schatz MC, Piel J, Haygood MG, Ravel J, Schmidt EW (2011) Proc Natl Acad Sci 108:E1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Griffiths DJ (2006) Bot Rev 72:330

    Article  Google Scholar 

  14. Odintsov VS (1990) Endocytobiosis Cell Res 7:253

    Google Scholar 

  15. Donia MS, Fricke WF, Ravel J, Schmidt EW (2011) PLoS One 6:17897

    Article  Google Scholar 

  16. Behrendt L, Larkum AW, Trampe E, Norman A, Sorensen SJ, Kühl M (2012) ISME J 6:1222

    Article  CAS  PubMed  Google Scholar 

  17. Giordano M, Beardall J, Raven JA (2005) Annu Rev Plant Biol 56:99

    Article  CAS  PubMed  Google Scholar 

  18. Critchley C, Andrews TJ (1984) Arch Microbiol 138:247

    Article  CAS  Google Scholar 

  19. Schmidt EW, Donia MS (2010) Curr Opin Biotechnol 21:827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schmidt EW, Donia MS, Mcintosh JA, Fricke WF, Ravel J (2012) J Nat Prod 75:295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pettit GR, Day JF, Hartwell JL, Wood HB (1970) Nature 227:962

    Article  CAS  PubMed  Google Scholar 

  22. Krebs HC (1986) Progress in the chemistry of organic natural products. Springer, Wien, pp 151–363

    Google Scholar 

  23. Milne BF, Long PF, Starcevic A, Hranueli D, Jaspars M (2006) Org Biomol Chem 4:631–638

    Article  CAS  PubMed  Google Scholar 

  24. Schmidt EW, Nelson JT, Rasko DA, Sudek S, Eisen JA, Haygood MG, Ravel J (2005) Proc Natl Acad Sci 102:7315–7320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Houssen WE, Bent AF, McEwan AR, Pieiller N, Tabudravu J, Koehnke J, Mann G, Adaba RI, Thomas L, Hawas UW, Liu H, Schwarz-Linek U, Smith MCM, Naismith JH, Jaspars M (2014) Angew Chem Int Ed 53:14171–14174

    Article  CAS  Google Scholar 

  26. Long PF, Dunlap WC, Battershill CN, Jaspars M (2005) ChemBioChem 6:1760

    Article  CAS  PubMed  Google Scholar 

  27. Houssen WE, Jaspars M (2010) ChemBioChem 11:1803

    Article  CAS  PubMed  Google Scholar 

  28. Hamamoto Y, Endo M, Nakagawa T, Nakanishi T, Mizukawa K (1983) J Chem Soc Chem Commun 1983:323–324

    Article  Google Scholar 

  29. Schmidt U, Utz R, Gleich P (1985) Tetrahedron Lett 26(36):4367–4370

    Article  CAS  Google Scholar 

  30. Ireland CS, Paul J (1980) J Am Chem Soc 102(17):5688–5691

    Article  CAS  Google Scholar 

  31. Prinsep MRM, Moore RE, Levine IA, Patterson GML (1992) J Nat Prod 55(1):140–142

    Article  CAS  PubMed  Google Scholar 

  32. Hambley TW, Hawkins CJ, Lavin MF, van den Brenk A, Watters DJ (1992) Tetrahedron 48(2):341–348

    Article  CAS  Google Scholar 

  33. Haberhauer G (2008) Tetrahedron Lett 49:2421

    Article  CAS  Google Scholar 

  34. Comba P, Dovalil N, Gahan LR, Haberhauer G, Hanson GR, Noble CJ, Seibold B, Vadivelu P (2012) Chem Eur J 18:2578–2590

    Article  CAS  PubMed  Google Scholar 

  35. Haberhauer G, Rominger F (2003) Eur J Org Chem 2003:3209–3218

    Article  Google Scholar 

  36. Haberhauer G, Drosdow E, Oeser T, Rominger F (2008) Tetrahedron 64:1853–1859

    Article  CAS  Google Scholar 

  37. Pintér Á, Haberhauer G (2009) Tetrahedron 65:2217

    Article  Google Scholar 

  38. Comba P, Dovalil N, Gahan LR, Hanson GR, Westphal M (2014) Dalton Trans (Dalton Perspective) 43:1935–1956

    Article  CAS  Google Scholar 

  39. Wipf P, Fritch PC, Geib SJ, Sefler AM (1998) J Am Chem Soc 120:4105–4112

    Article  CAS  Google Scholar 

  40. Degnan BM, Hawkins CJ, Lavin MF, Mccaffrey EJ, Parry DL, van den Brenk AL, Watters DJ (1989) J Med Chem 32(6):1349–1354

    Article  CAS  PubMed  Google Scholar 

  41. van den Brenk AL, Byriel KA, Fairlie DP, Gahan LR, Hanson GR, Hawkins CJ, Jones A, Kennard CHL, Moubaraki B, Murray KS (1994) Inorg Chem 33:3549–3557

    Article  Google Scholar 

  42. Comba P, Dovalil N, Haberhauer G, Kowski K, Mehrkens N, Westphal M (2013) Z Anorg Allg Chem 639(8-9):1395–1400

    Article  CAS  Google Scholar 

  43. Comba P, Dovalil N, Hanson GR, Linti G (2011) Inorg Chem 50:5165–5174

    Article  CAS  PubMed  Google Scholar 

  44. Haberhauer G, Pinter A, Oeser T, Rominger F (2007) Eur J Org Chem 2007:1779–1792

    Article  Google Scholar 

  45. Comba P, Gahan LR, Haberhauer G, Hanson GA, Noble CJ, Seibold B, van den Brenk AL (2008) Chem Eur J 14:4393–4403

    Article  CAS  PubMed  Google Scholar 

  46. Bernhardt PV, Comba P, Hambley TW, Massoud SS, Stebler S (1992) Inorg Chem 31:2644–2651

    Article  CAS  Google Scholar 

  47. Comba P, Cusack R, Fairlie DP, Gahan LR, Hanson GR, Kazmaier U, Ramlow A (1998) Inorg Chem 37:6721–6727

    Article  CAS  PubMed  Google Scholar 

  48. Bernhardt PV, Comba P, Fairlie DP, Gahan LA, Hanson GR, Lötzbeyer L (2002) Chem Eur J 8:1527–1536

    Article  CAS  PubMed  Google Scholar 

  49. Comba P, Eisenschmidt A, Gahan L, Hanson G, Mehrkens N, Westphal M (2016) Dalton Trans 45:18931–18945. doi:10.1039/C6DT03787A

    Article  CAS  PubMed  Google Scholar 

  50. Comba P, Eisenschmidt A, Kipper N, Schiessl JJ (2016) Inorg Biochem 159:70–75

    Article  CAS  Google Scholar 

  51. Comba P (1992) Habilitation. Universität Basel

    Google Scholar 

  52. Comba P, Lampeka YD, Lötzbeyer L, Prikhod'ko AI (2003) Eur J Inorg Chem 2003:34–37

    Article  Google Scholar 

  53. Comba P, Lampeka YD, Prikhod'ko AI, Rajaraman G (2006) Inorg Chem 45:3632–3638

    Article  CAS  PubMed  Google Scholar 

  54. Smith TD, Pilbrow JR (1974) Coord Chem Rev 13:173–278

    Article  CAS  Google Scholar 

  55. Comba P, Pandian S, Wadepohl H, Wiesner S (2011) Inorg Chim Acta (Special Issue Wolfgang Kaim) 374:422–428

    Article  CAS  Google Scholar 

  56. Hanson GR, Gates KE, Noble CJ, Griffin M, Mitchell A, Benson S (2004) J Inorg Biochem 98:903–916

    Article  CAS  PubMed  Google Scholar 

  57. Hanson GR, Noble CJ, Benson S (2009) Molecular sophe, an integrated approach to the structural characterization of metalloproteins - the next generation of computer simulation software. In: Hanson GR, Berliner LJ (eds) High resolution EPR: applications to metalloenzymes and metals in medicine, vol 28. Springer, Dordrecht, Heidelberg, London, New York, pp 105–174

    Chapter  Google Scholar 

  58. Comba P, Gahan LR, Hanson GR, Maeder M, Westphal M (2014) Dalton Trans 43(8):3144–3152

    Article  CAS  PubMed  Google Scholar 

  59. Bosch S, Comba P, Gahan LR, Hanson GR, Schenk G, Wadepohl H (2015) Chem Eur J 21:18269–18279

    Article  CAS  PubMed  Google Scholar 

  60. Comba P, Dovalil N, Hanson G, Harmer J, Noble CJ, Riley MJ, Seibold B (2014) Inorg Chem 53:12323–12336

    Article  CAS  PubMed  Google Scholar 

  61. Comba P, Dovalil N, Haberhauer G, Kowski K, Mehrkens N, Westphal MZ (2013) Allg Anorg Chem (Special Issue Bioinorg Chem) 639:1395–1400

    CAS  Google Scholar 

  62. Dovalil N (2010) Copper(II) coordination chemistry of cyclic pseudo hexa- and octapeptides, PhD thesis, Heidelberg University, Heidelberg

    Google Scholar 

  63. Daumann L (2014) Dalton Trans 43:910

    Article  CAS  PubMed  Google Scholar 

  64. Comba P, Dovalil N, Gahan LR, Haberhauer G, Hanson GR, Noble CJ, Seibold B, Vadivelu P (2012) Chemistry 18(9):2578–2590. doi:10.1002/chem.201101975.

    Article  CAS  PubMed  Google Scholar 

  65. Comba P, Gahan LR, Hanson GR, Westphal M (2012) Chem Comm 48(75):9364. doi:10.1039/c2cc34836e

    Article  CAS  PubMed  Google Scholar 

  66. Foster AW, Osman D, Robinson NJJ (2014) Biol Chem 289(41):28095–28103. doi:10.1074/jbc.R114.588145

    Article  CAS  Google Scholar 

  67. Porcheron G, Garenaux A, Proulx J, Sabri M, Dozois C (2013) FCIMB 3(90). doi:10.3389/fcimb2013.00090

  68. Rowan LG, Hahn EL, Mims WB (1965) Phys Rev A 137(1A):61–71

    Article  CAS  Google Scholar 

  69. Mims WB (1972) Phys Rev B 5(7):2409–2419

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the excellent work done by coworkers, collaborators and colleagues mentioned in the references, specifically the work done by PhD students in the Comba group and the collaboration with colleagues from Brisbane, particularly Lawrie Gahan and Graeme Hanson. Graeme’s input was invaluable and we miss him as a scholar and dear friend.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Comba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Comba, P., Eisenschmidt, A. (2017). Structures, Electronics and Reactivity of Copper(II) Complexes of the Cyclic Pseudo-Peptides of the Ascidians. In: Hanson, G., Berliner, L. (eds) Future Directions in Metalloprotein and Metalloenzyme Research. Biological Magnetic Resonance, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-59100-1_2

Download citation

Publish with us

Policies and ethics