Skip to main content

Information in Quantum Theory

  • Chapter
  • First Online:
Understanding Information

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

  • 1660 Accesses

Abstract

This chapter outlines the ‘engineering’ and ‘scientific’ approaches to the study of information in classical physics, and the fairly minor changes that came with the arrival of quantum theory in the early twentieth century. The main advances came from the mid-1990s when quantum information theory developed enormously, with important work, theoretical and experimental, carried out in quantum computation, quantum cryptography and quantum teleportation. The concept of information as the fundamental building-block of the Universe also became important, and also the idea that the Universe was a quantum computer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bell J (1964) On the Einstein-Podolsky-Rosen paradox. Physics 1(3):195–200. [Also in: Bell J (1987) Speakable and unspeakable in quantum mechanics. Cambridge University Press, Cambridge, pp 213–31]

    Google Scholar 

  • Bell J (1990) Against “measurement”. Phys World 3(8):31–40. [Also in: Bell J (1987) Speakable and unspeakable in quantum mechanics. Cambridge University Press, Cambridge, pp 14–21]

    Google Scholar 

  • Bennett CH, Brassard G (1984) Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the 1984 IEEE International conference on computers, systems and system processing. IEEE, New York, pp 175–179. Available via http://researcher.watson.ibm.com/researcher/files/us-bennetc/BB84highest.pdf. Accessed 29 July 2016

  • Bennett CH, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters WK (1993) Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett 70(13):1895–1899

    Article  MathSciNet  MATH  Google Scholar 

  • Brukner C̆, Zeilinger A (2005) Quantum physics as a science of information. In: Elitzur AC, Dolev S, Kolenda N (eds) Quantum mechanics. Springer, Berlin, pp 47–61

    Google Scholar 

  • Brun TA, Finkelstein J, Mermin DN (2002) How much state assignments can differ. Phys Rev A 65(3):032315

    Article  Google Scholar 

  • Buttler WT, Hughes RJ, Kwiat PG, Lamoreaux SK, Luther GG, Morgan GL, Nordholt JE, Peterson CG, Simmons CM (1998) Practical free-space quantum key distribution over 1 km. Phys Rev Lett 81(15):3823–3826

    Article  MATH  Google Scholar 

  • Cirac JI, Zoller P (1995) Quantum computation with cold trapped ions. Phys Rev Lett 74(20):4091–4094

    Article  Google Scholar 

  • Cleve R, Ekert A, Macchiavello C, Mosca M (1998) Quantum algorithms revisited. Proc R Soc A 454:339–354

    Article  MathSciNet  MATH  Google Scholar 

  • Deutsch D (1985) Quantum theory, the Church-Turing principle and the universal quantum computer. Proc R Soc A 400:97–117

    Article  MathSciNet  MATH  Google Scholar 

  • Deutsch D (1997) The fabric of reality. Allen Lane Science, London

    Google Scholar 

  • Deutsch D, Jozsa R (1992) Rapid solutions of problems by quantum computation. Proc R Soc A 439:553–558

    Article  MathSciNet  MATH  Google Scholar 

  • Dieks D (1982) Communication by EPR devices. Phys Lett A 92(6):271–272

    Article  Google Scholar 

  • Ekert AK (1991) Quantum cryptography based on Bell’s theorem. Phys Rev Lett 67(6):661–663

    Article  MathSciNet  MATH  Google Scholar 

  • Ekert AK, Jozsa R (1996) Quantum computation and Shor’s factoring algorithm. Rev Mod Phys 68(3):733–753

    Article  MathSciNet  Google Scholar 

  • Feynman RP, Hey JG, Allen RW (eds) (1996) Feynman lectures on computation. Addison-Wesley, Reading

    Google Scholar 

  • Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th annual ACM symposium on the theory of computing (STOC). ACM, New York, pp 212–219. Available via http://arxiv.org/abs/quant-ph/9605043. Accessed 29 July 2016

  • Hey AJG (ed) (1999) Feynman and computation. Perseus Books, Reading

    MATH  Google Scholar 

  • Hodges A (1992) Alan Turing: the enigma. Random House, London

    MATH  Google Scholar 

  • Landauer RW (1991) Information is physical. Phys Today 44(5):23–29

    Article  Google Scholar 

  • Lloyd S (2006) Programming the universe: a quantum computer scientist takes on the cosmos. Knopf Publishing Group, New York

    Google Scholar 

  • Mermin DN (2002) Whose knowledge? In: Bertlmann R, Zeilinger A (eds) Quantum [un]speakables: from bell to quantum information. Springer, Berlin, pp 271–280

    Chapter  Google Scholar 

  • Mermin DN (2007) Quantum computer science. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Muller A, Zbinden H, Gisin N (1986) Quantum cryptography over 23 km in installed under-lake Telecom wire. Europhys Lett 33(5):335–339

    Article  Google Scholar 

  • Peierls R (1991) In defence of “measurement”. Phys World 4(1):19–20

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423; 623–656

    Article  MathSciNet  MATH  Google Scholar 

  • Shor PW (1994) Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th annual symposium on foundations of computer science, Santa Fe. IEEE, pp 124–134

    Chapter  Google Scholar 

  • Shor PW (1995) Scheme for reducing decoherence in quantum computer memory. Phys Rev A 52(4):R2493–R2496

    Article  Google Scholar 

  • Smith JM (2000) The concept of information in biology. Philos Sci 67(2):177–194. [Also in: Davies P, Gregarsen NH (eds) (2010) Information and the nature of reality: from physics to metaphysics. Cambridge University Press, Cambridge]

    Google Scholar 

  • Steane AM (1996) Error correcting codes in quantum theory. Phys Rev Lett 77(5):793–797

    Article  MathSciNet  MATH  Google Scholar 

  • Vedral V (2010) Decoding reality: the universe as quantum information. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Whitaker A (2012) The new quantum age: from Bell’s theorem to quantum computation and teleportation. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Whitaker A (2016) John Stewart Bell and twentieth-century physics. Oxford University Press, Oxford

    Book  Google Scholar 

  • Wooters W, Wojciech Z (1982) A single quantum cannot be cloned. Nature 299:802–803

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Whitaker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Whitaker, A. (2017). Information in Quantum Theory. In: Schuster, A. (eds) Understanding Information. Advanced Information and Knowledge Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-59090-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59090-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59089-9

  • Online ISBN: 978-3-319-59090-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics