Skip to main content

Expanding Beyond the Solar System: Current Observation and Theory

  • Chapter
  • First Online:
Understanding Information

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

  • 1642 Accesses

Abstract

Galaxies, stars, and planets have captivated and inspired human minds for centuries. A relatively young discovery in our universe is so-called extrasolar planets. First discovered in 1995, these planets travel in great distances, far outside of our solar system. A major challenge in extrasolar planet research is that these planets are extremely difficult to detect. Indeed, in many situations, this challenge demands great ingenuity when it comes to data analysis and information processing. The motivation in this chapter is to describe the general environment in which these challenges take place. In the course of this exploration, the reader is going to travel deep into our universe where silent messengers such as the COROT or Kepler space satellites communicate with us silently, reliably, and continuously in order to increase our understanding about the formation of planets, our solar system, and our universe at large.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Extrasolar Planets Encyclopedia. http://exoplanet.eu/. Accessed: 2016-06-28.

  2. 2.

    CHaracterising ExOPlanet Satellite (CHEOPS). http://sci.esa.int/cheops/. Accessed: 2016-06-28.

  3. 3.

    Thirty Meter Telescope (TMT). http://tmt.mtk.nao.ac.jp/intro-e.html. Accessed: 2016-06-28.

  4. 4.

    James Webb Space Telescope (JWST). http://jwst.nasa.gov/index.html. Accessed: 2016-06-28.

  5. 5.

    The best of the Hubble space telescope. http://archive.seds.org/hst/OriEODsk.html. Accessed: 2016-06-29.

  6. 6.

    Convection, Rotation and planetary Transits (COROT). http://sci.esa.int/corot/. Accessed: 2016-09-01.

  7. 7.

    NASA Kepler mission. http://kepler.nasa.gov/Mission/. Accessed: 2016-09-05.

  8. 8.

    exoplanets.org. http://exoplanets.org/. Accessed: 2016-08-31.

  9. 9.

    Anglo-Australian Planet Search. http://newt.phys.unsw.edu.au/~cgt/planet/AAPS_Home.html. Accessed: 2016-08-31.

  10. 10.

    Released Kepler Planetary Candidates. https://archive.stsci.edu/kepler/planet_candidates.html. Accessed: 2016-09-03.

  11. 11.

    SuperWASP. http://www.superwasp.org. Accessed: 2016-09-03.

  12. 12.

    Southern Sky extrasolar Planet search Programme. http://obswww.unige.ch/~udry/planet/coralie.html. Accessed: 2016-08-31.

  13. 13.

    exoplanets.org: Documentation and methodology. http://exoplanets.org/methodology.html. Accessed: 2016-09-02.

  14. 14.

    Exoplanet Transit Database. http://var2.astro.cz/ETD/index.php. Accessed: 2016-09-04.

  15. 15.

    TRESCA project. http://var2.astro.cz/EN/tresca/. Accessed: 2016-08-31.

References

  • Adachi I, Hayashi C, Nakazawa K (1976) The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Prog Theor Phys 56(6):1756–1771

    Article  Google Scholar 

  • ALMA Partnership, Brogan CL, Pérez LM, Hunter TR, Dent WRF (80 additional authors not shown) (2015) The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region. Astrophys J Lett 808(1):L3

    Google Scholar 

  • Armitage PJ (2013) Astrophysics of planet formation. Cambridge University Press, Cambridge

    Google Scholar 

  • Beaulieu JP, Bennett DP, Fouque P, Williams A, Dominik M (68 additional authors not shown) (2006) Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature 439(7075):437–440

    Google Scholar 

  • Berta-Thompson ZK, Irwin J, Charbonneau D, Newton ER, Dittmann JA (16 additional authors not shown) (2015) A rocky planet transiting a nearby low-mass star. Nature 527(7577):2

    Google Scholar 

  • Beuzit JL, Mouillet D, Oppenheimer BR, Monnier JD (2007) Direct detection of exoplanets. Protostars and planets V. University of Arizona Press, Tucson

    Google Scholar 

  • Bozza V, Mancini L, Sozzetti A (2016) Methods of detecting exoplanets: 1st advanced school on exoplanetary science, 1st edn. Springer, Cham

    Book  Google Scholar 

  • Brown TM, Charbonneau D, Gilliland RL, Noyes RW, Burrows A (2001) Hubble space telescope time-series photometry of the transiting planet of HD 2094581. Astrophys J 522(2):699–709

    Article  Google Scholar 

  • Chambers J (2010) Terrestrial planet formation. Exoplanets. University of Arizona Press, Tucson

    Google Scholar 

  • Clayton DD (1984) Principles of stellar evolution and nucleosynthesis. University of Chicago Press, Chicago

    Google Scholar 

  • Cumming A (2010) Statistical distribution of exoplanets. Exoplanets. University of Arizona Press, Tucson

    Google Scholar 

  • Cuzzi JN, Dobrovolskis AR, Champney JM (1993) Particle-gas dynamics in the midplane of a protoplanetary nebula. Icarus 106(1):102–134

    Article  Google Scholar 

  • Draine BT, Dale DA, Bendo GJ, Gordon KD, Smith JD (15 additional authors not shown) (2007) Dust masses, PAH abundances, and starlight intensities in the SINGS galaxy sample. Astrophys J 663(2):866–894

    Google Scholar 

  • Dunham MM, Stutz AM, Allen LE, Evans NJ, Fischer WJ, Megeath ST, Myers PC, Offner SSR, Poteet CA, Tobin JJ, Vorobyov EI (2014) The evolution of protostars: insights from ten years of infrared surveys with Spitzer and Herschel. Protostars and planets VI. University of Arizona Press, Tucson

    Google Scholar 

  • Einstein A (1916) Die Grundlage der Allgemeinen Relativitätstheorie. Annalen der Physik 49(1):769–822

    Article  MATH  Google Scholar 

  • Fischer DA, Howard AW, Laughlin GP, Macintosh B, Mahadevan S, Sahlmann J, Yee JC (2014) Exoplanet detection techniques. Protostars and planets VI. University of Arizona Press, Tucson

    Book  Google Scholar 

  • Ford EB, Rasio FA (2008) Origins of eccentric extrasolar planets: testing the planet-planet scattering model. Astrophys J 686(1):621–636

    Article  Google Scholar 

  • Gatewood G, Eichhorn H (1973) An unsuccessful search for a planetary companion of Barnard’s star BD +4 3561. Astron J 78:769–776

    Article  Google Scholar 

  • Giovanna T, Vidal-Madjar A, Liang MC, Beaulieu JP, Yung Y (8 additional authors not shown) (2007) Water vapour in the atmosphere of a transiting extrasolar planet. Nature 448(7150):169–171

    Google Scholar 

  • Goldreich P, Tremaine S (1979) The excitation of density waves at the Lindblad and corotation resonances by an external potential. Astrophys J 233(3):857–871

    Article  MathSciNet  Google Scholar 

  • Goldreich P, Ward WR (1973) The formation of planetesimals. Astrophys J 183:1051–1062

    Article  Google Scholar 

  • Gray DF (1997) Absence of a planetary signature in the spectra of the star 51 Pegasi. Nature 385(6619):795–796

    Article  Google Scholar 

  • Gray DF, Hatzes AP (1997) Non-radial oscillation in the solar-temperature star 51 Pegasi. Astrophys J 490(1):412–424

    Article  Google Scholar 

  • Guillot T (1999) A comparison of the interiors of Jupiter and Saturn. Planet Space Sci 47(10–11):1183–1200

    Article  Google Scholar 

  • Hansen JR (2012) First man: the life of Neil A. Armstrong, Reissue edition. Simon & Schuster, New York

    Google Scholar 

  • Hayashi C (1981) Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog Theor Phys Suppl 70:35–53

    Article  Google Scholar 

  • Hayashi C, Nakazawa K, Nakagawa Y (1985) Formation of the solar system. Protostars and planets II. University of Arizona Press, Tucson

    Google Scholar 

  • Hearnshaw JB (2014) The analysis of starlight: two centuries of astronomical spectroscopy, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Ikoma M, Nakazawa K, Emori H (2000) Formation of giant planets: dependencies on core accretion rate and grain opacity. Astrophys J 537(2):1013–1025

    Article  Google Scholar 

  • Inaba S, Barge P (2006) Dusty vortices in protoplanetary disks. Astrophys J 649(1):415–427

    Article  Google Scholar 

  • Inaba S, Ikoma M (2003) Enhanced collisional growth of a protoplanet that has an atmosphere. Astron Astrophys 410(2):711–723

    Article  Google Scholar 

  • Inaba S, Tanaka H, Nakazawa K, Wetherill GW, Kokubo E (2001) High-accuracy statistical simulation of planetary accretion: II comparison with N-body simulation. Icarus 149(1):235–250

    Article  Google Scholar 

  • Inaba S, Wetherill GW, Ikoma M (2003) Formation of gas giant planets: core accretion models with fragmentation and planetary envelope. Icarus 166(1):46–62

    Article  Google Scholar 

  • Irwin PGJ (2008) Detection methods and properties of known exoplanets. In: Mason JW (ed) Exoplanets: detection, formation, properties, habitability. Springer praxis books series. Springer, Berlin, pp 1–20

    Google Scholar 

  • Janson M, Carson JC, Thalmann C, McElwain MW, Goto M (46 additional authors not shown) (2011) Near-infrared multi-band photometry of the substellar companion GJ 758 B. Astrophys J 728(2):85

    Google Scholar 

  • Jeans JH (1902) The stability of a spherical nebula. Philos Trans R Soc Lond. Ser A Contain Pap Math Phys Character 199(312–320):1–53

    Google Scholar 

  • Johansen A, Oishi JS, Mac Low MM, Klahr H, Henning T, Youdin A (2007) Rapid planetesimal formation in turbulent circumstellar disks. Nature 448(7157):1022–1025

    Article  Google Scholar 

  • Jones HRA, Butler PR, Tinney CG, Marcy GW, Penny AJ, McCarthy C, Carter BD (2003) An exoplanet in orbit around Ï„ 1 Gruis. Mon Not R Astron Soc 341(3):948–952

    Article  Google Scholar 

  • Kjurkchieva D, Dimitrov D, Vladev A, Yotov V (2013) New approach for modelling of transiting exoplanets for arbitrary limb-darkening law. Mon Not R Astron Soc 431(4):3642–3653

    Article  Google Scholar 

  • Kokubo E, Ida S (2000) Formation of protoplanets from planetesimals in the solar nebula. Icarus 143(1):15–27

    Article  Google Scholar 

  • Krügel E (2002) The physics of interstellar dust. CRC Press, Hoboken

    Book  Google Scholar 

  • Lin DNC, Papaloizou JCB (2011) On the tidal interaction between protoplanets and the primordial solar nebula. II – self-consistent nonlinear interaction. Astrophys J 307:395–409

    Article  Google Scholar 

  • Lovis C, Fischer DA (2010) Radial velocity techniques for exoplanets. Exoplanets. University of Arizona Press, Tucson

    Google Scholar 

  • Lubow SH, Ida S (2010) Planet migration. Exoplanets. University of Arizona Press, Tucson

    Google Scholar 

  • Ludwig W, Eggl S, Neubauer D, Leitner JJ, Firneis MG, Hitzenberger R (2016) Effective stellar flux calculations for limits of life-supporting zones of exoplanets. Mon Not R Astron Soc 458(4):3752–3759

    Article  Google Scholar 

  • Marcy GW, Butler PR (1998) Detection of extrasolar giant planets. Annu Rev Astron Astrophys 36(1):57–97

    Article  Google Scholar 

  • Marcy GW, Butler PR, Fischer D, Vogt S, Wright JT, Tinney CG, Jones HRA (2005) Observed properties of exoplanets: masses, orbits, and metallicities. Prog Theor Phys Suppl 158:24–42

    Article  Google Scholar 

  • Marois C, Zuckerman B, Konopacky QM, Macintosh B, Barman T (2010) Images of a fourth planet orbiting HR 8799. Nature 468(7327):1080–1083

    Article  Google Scholar 

  • Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378(6555):355–359

    Article  Google Scholar 

  • Meschiari S, Wolf AS, Rivera E, Laughlin G, Vogt S, Butler P (2009) Systemic: a testbed for characterizing the detection of extrasolar planets. I. The systemic console package. Publ Astron Soc Pac 121(883):1016–1027

    Article  Google Scholar 

  • Narita N, Fukui A, Kusakabe N, Onitsuka M, Ryu T, Yanagisawa K, Izumiura H, Tamura M, Yamamuro T (2015) MuSCAT: a multicolor simultaneous camera for studying atmospheres of transiting exoplanets. J Astron Telesc Instrum Syst 1:4

    Article  Google Scholar 

  • Paardekooper SJ, Mellema G (2006) Halting Type I planet migration in non-isothermal disks. Astron Astrophys 459(1):L17–L20

    Article  Google Scholar 

  • Parviainen H (2015) PYTRANSIT: fast and easy exoplanet transit modelling in PYTHON. Mon Not R Astron Soc 450(3):3233–3238

    Article  MathSciNet  Google Scholar 

  • Perryman M (2011) The exoplanet handbook. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Poddaný S, Brát L, Pejcha O (2010) Exoplanet transit database. Reduction and processing of the photometric data of exoplanet transits. New Astron 15(3):297–301

    Article  Google Scholar 

  • Pontoppidan KM, Salyk C, Bergin EA, Brittain S, Marty B, Mousis O, Öberg KI (2014) Volatiles in protoplanetary disks. Protostars and planets VI. University of Arizona Press, Tuscon

    Book  Google Scholar 

  • Rice K (2014) The detection and characterization of extrasolar planets. Challenges 5:296–323

    Article  Google Scholar 

  • Schneider J, Dedieu C, Le Sidaner P, Savalle R, Zolotukhin I (2011) Defining and cataloging exoplanets: the exoplanet.eu database. Astron Astrophy 532:A79

    Google Scholar 

  • Sing DK, Fortney JJ, Nikolov N, Wakeford HR, Kataria T (16 additional authors not shown) (2016) A Continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529(7584):59–62

    Google Scholar 

  • Taylor EF (2000) Exploring black holes introduction to general relativity. Benjamin Cummings, San Francisco

    Google Scholar 

  • Thalmann C, Carson J, Janson M, Goto M, McElwain M (15 additional authors not shown) (2009) Discovery of the coldest imaged companion of a Sun-like star. Astrophys J 707(2):L123–L127

    Google Scholar 

  • Udry S, Santos NC (2007) Statistical properties of exoplanets. Annu Rev Astron Astrophys 45(1):397–439

    Article  Google Scholar 

  • Udry S, Mayor M, Santos NC (2003) Statistical properties of exoplanets. I. The period distribution: constraints for the migration scenario. Astron Astrophys 407:369–376

    Article  Google Scholar 

  • Van de Kamp P (1969a) Alternate dynamical analysis of Barnard’s star. Astron J 74(8):757–759

    Article  Google Scholar 

  • Van de Kamp P (1969b) Parallax, proper motion, acceleration, and orbital motion of Barnard’s Star. Astron J 74(2):238–240

    Article  Google Scholar 

  • Walker GAH, Walker AR, Irwin AW, Larson AM, Yang SLS, Richardson DC (1995) A search for Jupiter-mass companions to nearby stars. Icarus 116(2):359–375

    Article  Google Scholar 

  • Ward WR (1986) Density waves in the solar nebula: differential Lindblad torque. Icarus 67(1):164–180

    Article  Google Scholar 

  • Wittenmyer RA, O’Toole SJ, Jones HRA, Tinney CG, Butler PR, Carter BD, Bailey J (2010) The frequency of low-mass exoplanets. II. The period valley. Astrophys J 722(2):1854–1863

    Article  Google Scholar 

  • Yamada K, Inaba S (2012) Type I migration in optically thick accretion discs. Mon Not R Astron Soc 424(4):2746

    Article  Google Scholar 

  • Zeilik M, Gregory SA (1997) Introductory astronomy and astrophysics, 4th edn. Brooks Cole, Boston

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by JSPS KAKENHI Grant Number 25800250.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ko Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yamada, K., Inaba, S. (2017). Expanding Beyond the Solar System: Current Observation and Theory. In: Schuster, A. (eds) Understanding Information. Advanced Information and Knowledge Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-59090-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59090-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59089-9

  • Online ISBN: 978-3-319-59090-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics