Skip to main content

Hybrid Order l 0-Regularized Blur Kernel Estimation Model for Image Blind Deblurring

  • Conference paper
  • First Online:
Advances in Neural Networks - ISNN 2017 (ISNN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10262))

Included in the following conference series:

Abstract

Most of blur kernel estimation models may fail when the blurred image contains some complex structures or is contaminated by large blur. In this paper, we propose a hybrid order l 0-regularized blur kernel estimation model for solving the problem. Firstly, we regularize the latent image in a hybrid order case involving both first-order and second-order regularization term, in which l 0 sparse prior is introduced. Secondly, we introduce an improved adaptive adjustment factor into the model for removing detrimental structures and obtaining more useful information. Finally, we develop an efficient optimization algorithm based on the half-quadratic splitting technique to obtain an accurate blur kernel. Extensive experiments results on both synthetic and some challenged real-life images show that proposed model can estimate a more accurate blur kernel and can effectively recover the latent image when it contains complex structures or is contaminated by large blur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chan, T.F., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image Proces. 7, 370–375 (1998)

    Article  Google Scholar 

  2. Cho, S., Lee, S.: Fast motion deblurring. ACM Trans. Graph. (TOG) 28, 145 (2009)

    Article  Google Scholar 

  3. Li, W., Chen, R., Xu, S., et al.: Blind motion image deblurring using nonconvex higher-order total variation model. J. Electron. Imaging 25, 053033 (2016)

    Article  Google Scholar 

  4. Fergus, R., Singh, B., Hertzmann, A., et al.: Removing camera shake from a single photograph. ACM Trans. Graph. (TOG) 25, 787–794 (2006)

    Article  Google Scholar 

  5. Levin, A., Weiss, Y., Durand, F., et al.: Understanding and evaluating blind deconvolution algorithms. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 964–1971 (2009)

    Google Scholar 

  6. Levin, A., Weiss, Y., Durand, F., et al.: Efficient marginal likelihood optimization in blind deconvolution. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 2657–2664. IEEE Computer Society (2011)

    Google Scholar 

  7. Goldstein, A., Fattal, R.: Blur-Kernel estimation from spectral irregularities. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 622–635. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33715-4_45

    Chapter  Google Scholar 

  8. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. (TOG) 27, 73 (2008)

    Google Scholar 

  9. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15549-9_12

    Chapter  Google Scholar 

  10. Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, pp. 233–240 (2011)

    Google Scholar 

  11. Xu, L., Zheng, S., Jia, J.: Unnatural l0 sparse representation for natural image deblurring. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1107–1114 (2013)

    Google Scholar 

  12. Lefkimmiatis, S., Bourquard, A., Unser, M.: Hessian-based norm regularization for image restoration with biomedical applications. IEEE Trans. Image Process. 21, 983–995 (2012)

    Article  MathSciNet  Google Scholar 

  13. Pan, J., Liu, R., Su, Z., et al.: Kernel estimation from salient structure for robust motion deblurring. Signal Process.: Image Commun. 28, 1156–1170 (2013)

    Google Scholar 

  14. Xu, L., Lu, C., Xu, Y., et al.: Image smoothing via L 0 gradient minimization. ACM Trans. Graph. (TOG) 30, 174 (2011)

    Google Scholar 

  15. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-Laplacian priors. In: Advances in Neural Information Processing Systems, pp. 1033–1041 (2009)

    Google Scholar 

  16. Wang, K., Shen, Y., Xiao, L., Wei, Z., Sheng, L.: Blind motion deblurring based on fused ℓ0-ℓ1 regularization. In: Zhang, Y.-J. (ed.) ICIG 2015. LNCS, vol. 9218, pp. 1–10. Springer, Cham (2015). doi:10.1007/978-3-319-21963-9_1

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Science and Technology Program for Public Wellbeing, China (Grant No. 2013GS500303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Li, W., Chen, Y., Chen, R., Gong, W., Zhao, B. (2017). Hybrid Order l 0-Regularized Blur Kernel Estimation Model for Image Blind Deblurring. In: Cong, F., Leung, A., Wei, Q. (eds) Advances in Neural Networks - ISNN 2017. ISNN 2017. Lecture Notes in Computer Science(), vol 10262. Springer, Cham. https://doi.org/10.1007/978-3-319-59081-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59081-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59080-6

  • Online ISBN: 978-3-319-59081-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics