Various Sharp Estimates for Semi-discrete Riesz Transforms of the Second Order

  • K. Domelevo
  • A. Osękowski
  • S. Petermichl
Part of the Operator Theory: Advances and Applications book series (OT, volume 261)


We give several sharp estimates for a class of combinations of second-order Riesz transforms on Lie groups G= GxxGy that are multiply connected, composed of a discrete Abelian component Gx and a connected component Gy endowed with a biinvariant measure. These estimates include new sharp Lp estimates via Choi type constants, depending upon the multipliers of the operator. They also include weak-type, logarithmic and exponential estimates. We give an optimal Lq-Lp estimate as well.

It was shown recently by Arcozzi–Domelevo–Petermichl that such second- order Riesz transforms applied to a function may be written as conditional expectation of a simple transformation of a stochastic integral associated with the function.

The proofs of our theorems combine this stochastic integral representation with a number of deep estimates for pairs of martingales under strong differential subordination by Choi, Banuelos and Osękowski.

When two continuous directions are available, sharpness is shown via the laminates technique. We show that sharpness is preserved in the discrete case using Lax–Richtmyer theorem.


Riesz transforms martingales jump process strong subordination Lp 

Mathematics Subject Classification (2010)

Primary 42B20 Secondary 60G46 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IMT, Université Paul SabatierToulouseFrance
  2. 2.Faculty of Mathematics Informatics and MechanicsUniversity of WarsawWarsawPoland

Personalised recommendations