Skip to main content

A Method for Changes Prediction of the Dynamic Signature Global Features over Time

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10245))

Included in the following conference series:

Abstract

Dynamic signature can be represented by a set of global features. These features are interpreted as e.g. number of pen ups, time of signing process, etc. Values of global features can be determined on the basis of non-linear waveforms defining dynamics of the signature. They are acquired using graphic tablet or a device with a touch screen. In this paper we present a method for prediction values of the dynamic signature global features changing over time. The purpose of the prediction is, among others, improving the efficiency of the dynamic signature verification process when the interval between acquisition sessions is large. This interval causes a slight change in the way of signing, which can affect change in the value of global features. In this case the effectiveness of the signature verification also changes (decreases). The possibility of predicting the values of global features can result in a partial elimination of the described problem. Tests of the proposed method were performed using ATVS-SLT DB database of the dynamic signatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbas, J.: The bipolar choquet integrals based on ternary-element sets. J. Artif. Intell. Soft Comput. Res. 6(1), 13–21 (2016)

    Article  Google Scholar 

  2. Aghdam, M.H., Heidari, S.: Feature selection using particle swarm optimization in text categorization. J. Artif. Intell. Soft Comput. Res. 5(4), 231–238 (2015)

    Article  Google Scholar 

  3. Akimoto, T., Ogata, T.: Experimental development of a focalization mechanism in an integrated narrative generation system. J. Artif. Intell. Soft Comput. Res. 5(3), 177–188 (2015)

    Article  Google Scholar 

  4. Almohammadi, K., Hagras, H., Alghazzawi, D., Aldabbagh, G.: Users-centric adaptive learning system based on interval type-2 fuzzy logic for massively crowded e-learning platforms. J. Artif. Intell. Soft Comput. Res. 6, 81–101 (2016)

    Article  Google Scholar 

  5. Bas, E.: The training of multiplicative neuron model based artificial neural networks with differential evolution algorithm for forecasting. J. Artif. Intell. Soft Comput. Res. 6(1), 5–11 (2016)

    Article  Google Scholar 

  6. Bartczuk, Ł.: Gene expression programming in correction modelling of nonlinear dynamic objects. In: Borzemski, L., Grzech, A., Świątek, J., Wilimowska, Z. (eds.) Information Systems Architecture and Technology: Proceedings of 36th International Conference on Information Systems Architecture and Technology – ISAT 2015 – Part I. AISC, vol. 429, pp. 125–134. Springer, Cham (2016). doi:10.1007/978-3-319-28555-9_11

    Google Scholar 

  7. Bartczuk, Ł., Dziwiński, P., Starczewski, J.T.: New method for generation type-2 fuzzy partition for FDT. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6113, pp. 275–280. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13208-7_35

    Chapter  Google Scholar 

  8. Bartczuk, Ł., Przybył, A., Cpałka, K.: A new approach to nonlinear modelling of dynamic systems based on fuzzy rules. Int. J. Appl. Math. Comput. Sci. 3, 603–621 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Bartczuk, Ł., Przybył, A., Koprinkova-Hristova, P.: New method for non-linear correction modelling of dynamic objects with genetic programming. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9120, pp. 318–329. Springer, Cham (2015). doi:10.1007/978-3-319-19369-4_29

    Chapter  Google Scholar 

  10. Bartczuk, Ł., Łapa, K., Koprinkova-Hristova, P.: A new method for generating of fuzzy rules for the nonlinear modelling based on semantic genetic programming. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 262–278. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_23

    Google Scholar 

  11. Bertini, J.J.R., Nicoletti, M.D.C.: Enhancing constructive neural network performance using functionally expanded input data. J. Artif. Intell. Soft Comput. Res. 6(2), 119–131 (2016)

    Google Scholar 

  12. Chen, Q., Abercrombie, R.K., Sheldon, F.T.: Risk assessment for industrial control systems quantifying availability using Mean Failure Cost (MFC). J. Artif. Intell. Soft Comput. Res. 5(3), 205–220 (2015)

    Article  Google Scholar 

  13. Cierniak, R., Rutkowski, L.: On image compression by competitive neural networks and optimal linear predictors. Signal Process. Image Commun. 156, 559–565 (2000)

    Article  Google Scholar 

  14. Cpałka, K.: Design of Interpretable Fuzzy Systems. Springer, Cham (2017)

    Google Scholar 

  15. Cpałka, K., Łapa, K., Przybył, A.: A new approach to design of control systems using genetic programming. Inf. Technol. Control 44(4), 433–442 (2015)

    Google Scholar 

  16. Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy systems for nonlinear modelling. Int. J. Gener. Syst. 42(6), 706–720 (2013)

    Article  MATH  Google Scholar 

  17. Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno fuzzy systems. In: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks (IJCNN 2005), vol. 3, pp. 1764–1769 (2005)

    Google Scholar 

  18. Cpałka, K., Zalasiński, M., Rutkowski, L.: A new algorithm for identity verification based on the analysis of a handwritten dynamic signature. Appl. Soft Comput. 43, 47–56 (2016)

    Article  Google Scholar 

  19. Fierrez-Aguilar, J., Nanni, L., Lopez-Peñalba, J., Ortega-Garcia, J., Maltoni, D.: An on-line signature verification system based on fusion of local and global information. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 523–532. Springer, Heidelberg (2005). doi:10.1007/11527923_54

    Chapter  Google Scholar 

  20. Duda, P., Hayashi, Y., Jaworski, M.: On the strong convergence of the orthogonal series-type kernel regression neural networks in a non-stationary environment. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7267, pp. 47–54. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29347-4_6

    Chapter  Google Scholar 

  21. Er, M.J., Duda, P.: On the weak convergence of the orthogonal series-type kernel regresion neural networks in a non-stationary environment. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011. LNCS, vol. 7203, pp. 443–450. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31464-3_45

    Chapter  Google Scholar 

  22. Dziwiński, P., Avedyan, E.D.: A new approach for using the fuzzy decision trees for the detection of the significant operating points in the nonlinear modeling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 279–292. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_24

    Google Scholar 

  23. Dziwiński, P., Avedyan, E.D.: A New method of the intelligent modeling of the nonlinear dynamic objects with fuzzy detection of the operating points. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 293–305. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_25

    Google Scholar 

  24. Gabryel, M., Cpałka, K., Rutkowski, L.: Evolutionary strategies for learning of neuro-fuzzy systems. In: Proceedings of the I Workshop on Genetic Fuzzy Systems, Granada, pp. 119–123 (2005)

    Google Scholar 

  25. Galbally, J., Martinez-Diaz, M., Fierez, J.: Aging in biometrics: an experimental analysis on on-line signature. PLoS ONE 8(7), e69897 (2013)

    Article  Google Scholar 

  26. Gałkowski, T., Rutkowski, L.: Nonparametric fitting of multivariate functions. IEEE Trans. Autom. Control 31(8), 785–787 (1986)

    Article  MATH  Google Scholar 

  27. Held, P., Dockhorn, A., Kruse, R.: On merging and dividing social graphs. J. Artif. Intell. Soft Comput. Res. 5(1), 23–49 (2015)

    Article  Google Scholar 

  28. Jaworski, M., Er, M.J., Pietruczuk, L.: On the application of the parzen-type kernel regression neural network and order statistics for learning in a non-stationary environment. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7267, pp. 90–98. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29347-4_11

    Chapter  Google Scholar 

  29. Kasthurirathna, D., Piraveenan, M., Uddin, S.: Evolutionary stable strategies in networked games: the influence of topology. J. Artif. Intell. Soft Comput. Res. 5(2), 83–95 (2015)

    Article  Google Scholar 

  30. Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification, by boosting fuzzy classifiers. Inf. Sci. 327, 175–182 (2016)

    Article  MathSciNet  Google Scholar 

  31. Korytkowski, M., Scherer, R., Rutkowski, L.: On combining backpropagation with boosting. In: Proceedings of the 2006 International Joint Conference on Neural Networks, IEEE World Congress on Computational Intelligence, pp. 1274–1277 (2006)

    Google Scholar 

  32. Li, X., Er, M.J., Lim, B.S., Zhou, J.H., Gan, O.P., Rutkowski, L.: Fuzzy regression modeling for tool performance prediction and degradation detection. Int. J. Neural Syst. 2005, 405–419 (2010)

    Article  Google Scholar 

  33. Leon, M., Xiong, N.: Adapting differential evolution algorithms for continuous optimization via greedy adjustment of control parameters. J. Artif. Intell. Soft Comput. Res. 6(2), 103–118 (2016)

    Article  Google Scholar 

  34. Łapa, K., Przybył, A., Cpałka, K.: A new approach to designing interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS, vol. 7895, pp. 523–534. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38610-7_48

    Chapter  Google Scholar 

  35. Łapa, K., Szczypta, J., Venkatesan, R.: Aspects of structure and parameters selection of control systems using selected multi-population algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9120, pp. 247–260. Springer, Cham (2015). doi:10.1007/978-3-319-19369-4_23

    Chapter  Google Scholar 

  36. Łapa, K., Szczypta, J., Saito, T.: Aspects of evolutionary construction of new flexible PID-fuzzy controller. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9692, pp. 450–464. Springer, Cham (2016). doi:10.1007/978-3-319-39378-0_39

    Google Scholar 

  37. Łapa, K., Cpałka, K., Galushkin, A.I.: A new interpretability criteria for neuro-fuzzy systems for nonlinear classification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9119, pp. 448–468. Springer, Cham (2015). doi:10.1007/978-3-319-19324-3_41

    Chapter  Google Scholar 

  38. Łapa, K., Cpałka, K., Wang, L.: New approach for interpretability of neuro-fuzzy systems with parametrized triangular norms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9692, pp. 248–265. Springer, Cham (2016). doi:10.1007/978-3-319-39378-0_22

    Google Scholar 

  39. Miyajima, H., Shigei, N., Miyajima, H.: Performance comparison of hybrid electromagnetism-like mechanism algorithms with descent method. J. Artif. Intell. Soft Comput. Res. 5(4), 271–282 (2015)

    Article  MATH  Google Scholar 

  40. Nanni, L.: An advanced multi-matcher method for on-line signature verification featuring global features and tokenised random numbers. Neurocomputing 69, 2402–2406 (2006)

    Article  Google Scholar 

  41. Nanni, L., Lumini, A.: Ensemble of Parzen window classifiers for on-line signature verification. Neurocomputing 68, 217–224 (2005)

    Article  Google Scholar 

  42. Nanni, L., Lumini, A.: Advanced methods for two-class problem formulation for on-line signature verification. Neurocomputing 69, 854–857 (2006)

    Article  Google Scholar 

  43. Nikulin, V.: Prediction of the shoppers loyalty with aggregated data streams. J. Artif. Intell. Soft Comput. Res. 6, 69–79 (2016)

    Article  Google Scholar 

  44. Nguyen, K.P., Fujita, G., Dieu, V.N.: Cuckoo search algorithm for optimal placement and sizing of static var compensator in large-scale power systems. J. Artif. Intell. Soft Comput. Res. 6(2), 59–68 (2016)

    Article  Google Scholar 

  45. Nonaka, S., Tsujimura, T., Izumi, K.: Gain design of quasi-continuous exponential stabilizing controller for a nonholonomic mobile robot. J. Artif. Intell. Soft Comput. Res. 6(3), 189–201 (2016)

    Article  Google Scholar 

  46. Nowicki, R., Scherer, R., Rutkowski, L.: A Method for Learning of Hierarchical Fuzzy Systems. Intelligent Technologies - Theory and Applications. IOS Press, Amsterdam (2002)

    Google Scholar 

  47. Pietruczuk, L., Duda, P., Jaworski, M.: Adaptation of decision trees for handling concept drift. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS, vol. 7894, pp. 459–473. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38658-9_41

    Chapter  Google Scholar 

  48. Pietruczuk, L., Rutkowski, L., Jaworski, M., Duda, P.: How to adjust an ensemble size in stream data mining? Inf. Sci. 381, 46–54 (2017)

    Article  MathSciNet  Google Scholar 

  49. Przybył, A., Jelonkiewicz, J.: Genetic algorithm for observer parameters tuning in sensorless induction motor drive. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing. Advances in Soft Computing, vol. 19, pp. 376–381. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  50. Przybył, A., Smoląg, J., Kimla, P.: Distributed control system based on real time ethernet for computer numerical controlled machine tool. Przeglad Elektrotechniczny 86(2), 342–346 (2010). (in Polish)

    Google Scholar 

  51. Rutkowska, A.: Influence of membership functions shape on portfolio optimization results. J. Artif. Intell. Soft Comput. Res. 6(1), 45–54 (2016)

    Article  Google Scholar 

  52. Rutkowski, L.: Sequential pattern-recognition procedures derived from multiple Fourier-series. Pattern Recognit. Lett. 8(4), 213–216 (1988)

    Article  MATH  Google Scholar 

  53. Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regressions from noisy data. IEEE Trans. Signal Process. 41(10), 3062–3065 (1993)

    Article  MATH  Google Scholar 

  54. Rutkowski, L.: Identification of MISO nonlinear regressions in the presence of a wide class of disturbances. IEEE Trans. Inf. Theor. 37(1), 214–216 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  55. Rutkowski, L.: Adaptive probabilistic neural networks for pattern classification in time-varying environment. IEEE Trans. Neural Netw. 15(4), 811–827 (2004)

    Article  Google Scholar 

  56. Rutkowski, L.: Computational Intelligence. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  57. Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy reasoning. Control Cybern. 31(2), 297–308 (2002)

    MATH  Google Scholar 

  58. Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: Proceedings of the 2nd Euro-International Symposium on Computation Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 76, pp. 85–90 (2002)

    Google Scholar 

  59. Rutkowski, L., Cpałka, K.: Flexible neuro-fuzzy systems. IEEE Trans. Neural Netw. 14, 554–574 (2003)

    Article  Google Scholar 

  60. Rutkowski, L., Cpałka, K.: Flexible weighted neuro-fuzzy systems. In: Proceedings of the 9th International Conference on Neural Information Processing (ICONIP 2002), Orchid Country Club, Singapore, 18–22 November 2002

    Google Scholar 

  61. Rutkowski, L., Cpałka, K.: Neuro-fuzzy systems derived from quasi-triangular norms. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Budapest, 26–29 July, vol. 2, pp. 1031–1036 (2004)

    Google Scholar 

  62. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining data streams based on the Gaussian approximation. IEEE Trans. Knowl. Data Eng. 26(1), 108–119 (2014)

    Article  MATH  Google Scholar 

  63. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree for mining data streams. Inf. Sci. 266, 1–15 (2014)

    Article  MATH  Google Scholar 

  64. Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining data streams based on the McDiarmid’s bound. IEEE Trans. Knowl. Data Eng. 25(6), 1272–1279 (2013)

    Article  Google Scholar 

  65. Sakurai, S., Nishizawa, M., Soft, C.R.: A new approach for discovering top-k sequential patterns based on the variety of items. J. Artif. Intell. Soft Comput. Res. 5(2), 141–153 (2015)

    Article  Google Scholar 

  66. Scherer, R.: Designing boosting ensemble of relational fuzzy systems. Int. J. Neural Syst. 20, 381–388 (2010)

    Article  Google Scholar 

  67. Scherer, R.: Multiple Fuzzy Classification Systems. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  68. Serdah, A.M., Ashour, W.M., Soft, C.R.: Clustering large-scale data based on modified affinity propagation algorithm. J. Artif. Intell. Soft Comput. Res. 6(1), 23–33 (2016)

    Article  Google Scholar 

  69. Song, J., Romero, C.E., Yao, Z.: A globally enhanced general regression neural network for on-line multiple emissions prediction of utility boiler. Knowl. Based Syst. 118, 4–14 (2017)

    Article  Google Scholar 

  70. Stanovov, V., Semenkin, E., Semenkina, O.: Self-configuring hybrid evolutionary algorithm for fuzzy imbalanced classification with adaptive instance selection. J. Artif. Intell. Soft Comput. Res. 6, 173–188 (2016)

    Article  Google Scholar 

  71. Szarek, A., Korytkowski, M., Rutkowski, L., Scherer, R., Szyprowski, J.: Application of neural networks in assessing changes around implant after total hip arthroplasty. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7268, pp. 335–340. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29350-4_40

    Chapter  Google Scholar 

  72. Szczypta, J., Łapa, K., Shao, Z.: Aspects of the selection of the structure and parameters of controllers using selected population based algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8467, pp. 440–454. Springer, Cham (2014). doi:10.1007/978-3-319-07173-2_38

    Chapter  Google Scholar 

  73. Szczypta, J., Przybył, A., Cpałka, K.: Some aspects of evolutionary designing optimal controllers. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS, vol. 7895, pp. 91–100. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38610-7_9

    Chapter  Google Scholar 

  74. Xiao, Q.: Time series prediction using dynamic Bayesian network. Opt. Int. J. Light Electron Opt. 135, 98–103 (2017)

    Article  Google Scholar 

  75. Villmann, T., Bohnsack, A., Kaden, M.: Can learning vector quantization be an alternative to SVM and deep learning? - Recent trends and advanced variants of learning vector quantization for classification learning. J. Artif. Intell. Soft Comput. Res. 7(1), 65–81 (2017)

    Article  Google Scholar 

  76. Wei, H.: A bio-inspired integration method for object semantic representation. J. Artif. Intell. Soft Comput. Res. 6(3), 137–154 (2016)

    Article  Google Scholar 

  77. Zalasiński, M.: New algorithm for on-line signature verification using characteristic global features. In: Wilimowska, Z., Borzemski, L., Grzech, A., Świątek, J. (eds.) Information Systems Architecture and Technology: Proceedings of 36th International Conference on Information Systems Architecture and Technology – ISAT 2015 – Part IV. AISC, vol. 432, pp. 137–146. Springer, Cham (2016). doi:10.1007/978-3-319-28567-2_12

    Google Scholar 

  78. Zalasiński, M., Cpałka, K.: A new method of on-line signature verification using a flexible fuzzy one-class classifier, pp. 38–53. Academic Publishing House EXIT (2011)

    Google Scholar 

  79. Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification using selected discretization points groups. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS, vol. 7894, pp. 493–502. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38658-9_44

    Chapter  Google Scholar 

  80. Zalasiński, M., Cpałka, K.: New algorithm for on-line signature verification using characteristic hybrid partitions. In: Wilimowska, Z., Borzemski, L., Grzech, A., Świątek, J. (eds.) Information Systems Architecture and Technology: Proceedings of 36th International Conference on Information Systems Architecture and Technology – ISAT 2015 – Part IV. AISC, vol. 432, pp. 147–157. Springer, Cham (2016). doi:10.1007/978-3-319-28567-2_13

    Google Scholar 

  81. Zalasiński, M., Cpałka, K., Er, M.J.: New method for dynamic signature verification using hybrid partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8468, pp. 216–230. Springer, Cham (2014). doi:10.1007/978-3-319-07176-3_20

    Chapter  Google Scholar 

  82. Zalasiński, M., Cpałka, K., Hayashi, Y.: New method for dynamic signature verification based on global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8468, pp. 231–245. Springer, Cham (2014). doi:10.1007/978-3-319-07176-3_21

    Chapter  Google Scholar 

  83. Zalasiński, M., Cpałka, K., Hayashi, Y.: A new approach to the dynamic signature verification aimed at minimizing the number of global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 218–231. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_20

    Google Scholar 

  84. Zalasiński, M., Cpałka, K., Rakus-Andersson, E.: An idea of the dynamic signature verification based on a hybrid approach. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 232–246. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_21

    Google Scholar 

  85. Zalasiński, M., Łapa, K., Cpałka, K.: New algorithm for evolutionary selection of the dynamic signature global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS, vol. 7895, pp. 113–121. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38610-7_11

    Chapter  Google Scholar 

Download references

Acknowledgments

The project was financed by the National Science Centre (Poland) on the basis of the decision number DEC-2012/05/B/ST7/02138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Zalasiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zalasiński, M., Łapa, K., Cpałka, K., Saito, T. (2017). A Method for Changes Prediction of the Dynamic Signature Global Features over Time. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2017. Lecture Notes in Computer Science(), vol 10245. Springer, Cham. https://doi.org/10.1007/978-3-319-59063-9_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59063-9_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59062-2

  • Online ISBN: 978-3-319-59063-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics