Skip to main content

A Method for Genetic Selection of the Most Characteristic Descriptors of the Dynamic Signature

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10245))

Included in the following conference series:

Abstract

Dynamic signature verification is an important area of biometrics. In this area methods from the field of computational intelligence can be used. In this paper we propose a new method for genetic selection of the most characteristic descriptors of the dynamic signature. The descriptors are global features of the signature and components created within its partitions. Selection of the descriptors is realized individually for each user of the biometric system. Its purpose is to increase the precision of the biometric system by eliminating the descriptors which do not increase efficiency of verification procedure. Number of descriptors (their combination) can be high, so the use of genetic algorithm to reduce their number seems to be justified. Moreover, reduction of descriptors increases interpretability of fuzzy mechanism for evaluation of signatures’ similarity. Proposed method was tested using known dynamic signatures database-MCYT-100.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartczuk, Ł., Dziwiński, P., Starczewski, J.T.: A new method for dealing with unbalanced linguistic term set. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS (LNAI), vol. 7267, pp. 207–212. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29347-4_24

    Chapter  Google Scholar 

  2. Bartczuk, Ł., Dziwiński, P., Starczewski, J.T.: New method for generation type-2 fuzzy partition for FDT. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6113, pp. 275–280. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13208-7_35

    Chapter  Google Scholar 

  3. Bartczuk, Ł., Galushkin, A.I.: A new method for generating nonlinear correction models of dynamic objects based on semantic genetic programming. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 249–261. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_22

    Google Scholar 

  4. Bartczuk, Ł., Przybył, A., Cpałka, K.: A new approach to nonlinear modelling of dynamic systems based on fuzzy rules. Int. J. Appl. Math. Comput. Sci. 3, 603–621 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Bartczuk, Ł., Przybył, A., Koprinkova-Hristova, P.: New method for non-linear correction modelling of dynamic objects with genetic programming. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9120, pp. 318–329. Springer, Cham (2015). doi:10.1007/978-3-319-19369-4_29

    Chapter  Google Scholar 

  6. Bas, E.: The training of multiplicative neuron model based artificial neural networks with differential evolution algorithm for forecasting. J. Artif. Intell. Soft Comput. Res. 6(1), 5–11 (2016)

    Article  Google Scholar 

  7. Bello, O., Holzmann, J., Yaqoob, T., Teodoriu, C.: Application of artificial intelligence methods in drilling system design and operations: a review of the state of the art. J. Artif. Intell. Soft Comput. Res. 5(2), 121–139 (2015)

    Article  Google Scholar 

  8. Bertini, J.J.R., Nicoletti, M.D.C.: Enhancing constructive neural network performance using functionally expanded input data. J. Artif. Intell. Soft Comput. Res. 6(2), 119–131 (2016)

    Google Scholar 

  9. Bilski, J., Kowalczyk, B., Żurada, J.M.: Application of the givens rotations in the neural network learning algorithm. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9692, pp. 46–56. Springer, Cham (2016). doi:10.1007/978-3-319-39378-0_5

    Google Scholar 

  10. Cierniak, R., Rutkowski, L.: On image compression by competitive neural networks and optimal linear predictors. Signal Process. Image Commun. 156, 559–565 (2000)

    Article  Google Scholar 

  11. Cpałka, K.: Design of Interpretable Fuzzy Systems. Springer, Cham (2017)

    Google Scholar 

  12. Cpałka, K., Łapa, K., Przybył, A.: A new approach to design of control systems using genetic programming. Inf. Technol. Control 44(4), 433–442 (2015)

    Google Scholar 

  13. Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy systems for nonlinear modelling. Int. J. Gener. Syst. 42(6), 706–720 (2013)

    Article  MATH  Google Scholar 

  14. Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno. fuzzy systems. In: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, IJCNN 2005, vol. 3, pp. 1764–1769 (2005)

    Google Scholar 

  15. Cpałka, K., Zalasiński, M.: On-line signature verification using vertical signature partitioning. Expert Syst. Appl. 41, 4170–4180 (2014)

    Article  Google Scholar 

  16. Cpałka, K., Zalasiński, M., Rutkowski, L.: New method for the on-line signature verification based on horizontal partitioning. Pattern Recognit. 47, 2652–2661 (2014)

    Article  Google Scholar 

  17. Cpałka, K., Zalasiński, M., Rutkowski, L.: A new algorithm for identity verification based on the analysis of a handwritten dynamic signature. Appl. Soft Comput. 43, 47–56 (2016)

    Article  Google Scholar 

  18. Colchester, K., Hagras, H., Alghazzawi, D.: A survey of artificial intelligence techniques employed for adaptive educational systems within E-learning platforms. J. Artif. Intell. Soft Comput. Res. 7(1), 47–64 (2017)

    Article  Google Scholar 

  19. Duda, P., Hayashi, Y., Jaworski, M.: On the strong convergence of the orthogonal series-type kernel regression neural networks in a non-stationary environment. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7267, pp. 47–54. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29347-4_6

    Chapter  Google Scholar 

  20. Duda, P., Jaworski, M., Pietruczuk, L.: On pre-processing algorithms for data stream. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7268, pp. 56–63. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29350-4_7

    Chapter  Google Scholar 

  21. Dziwiński, P., Avedyan, E.D.: A new approach to nonlinear modeling based on significant operating points detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9120, pp. 364–378. Springer, Cham (2015). doi:10.1007/978-3-319-19369-4_33

    Chapter  Google Scholar 

  22. Dziwiński, P., Avedyan, E.D.: A new approach for using the fuzzy decision trees for the detection of the significant operating points in the nonlinear modeling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 279–292. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_24

    Google Scholar 

  23. Dziwiński, P., Avedyan, E.D.: A new method of the intelligent modeling of the nonlinear dynamic objects with fuzzy detection of the operating points. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 293–305. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_25

    Google Scholar 

  24. El-Samak, A.F., Ashour, W.: Optimization of traveling salesman problem using affinity propagation clustering and genetic algorithm. J. Artif. Intell. Soft Comput. Res. 5, 239–245 (2015)

    Article  Google Scholar 

  25. Fierrez-Aguilar, J., Nanni, L., Lopez-Peñalba, J., Ortega-Garcia, J., Maltoni, D.: An on-line signature verification system based on fusion of local and global information. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 523–532. Springer, Heidelberg (2005). doi:10.1007/11527923_54

    Chapter  Google Scholar 

  26. Gabryel, M., Cpałka, K., Rutkowski, L.: Evolutionary strategies for learning of neuro-fuzzy systems. In: Proceedings of the I Workshop on Genetic Fuzzy Systems, Granada, pp. 119–123 (2005)

    Google Scholar 

  27. Gałkowski, T., Rutkowski, L.: Nonparametric fitting of multivariate functions. IEEE Trans. Autom. Control. 31(8), 785–787 (1986)

    Article  MATH  Google Scholar 

  28. Gręblicki, W., Rutkowski, L.: Density-free Bayes risk consistency of nonparametric pattern recognition procedures. Proc. IEEE 69(4), 482–483 (1981)

    Article  Google Scholar 

  29. Harmati, I.Á., Bukovics, Á., Kóczy, L.T.: Minkowski’s inequality based sensitivity analysis of fuzzy signatures. J. Artif. Intell. Soft Comput. Res. 6(4), 219–229 (2016)

    Article  Google Scholar 

  30. Jaworski, M., Er, M.J., Pietruczuk, L.: On the application of the Parzen-type kernel regression neural network and order statistics for learning in a non-stationary environment. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7267, pp. 90–98. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29347-4_11

    Chapter  Google Scholar 

  31. Jaworski, M., Pietruczuk, L., Duda, P.: On resources optimization in fuzzy clustering of data streams. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7268, pp. 92–99. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29350-4_11

    Chapter  Google Scholar 

  32. Jimenez, F., Yoshikawa, T., Furuhashi, T., Kanoh, M.: An emotional expression model for educational-support robots. J. Artif. Intell. Soft Comput. Res. 5(1), 51–57 (2015)

    Article  Google Scholar 

  33. Kitajima, R., Kamimura, R.: Accumulative information enhancement in the self-organizing maps and its application to the analysis of mission statements. J. Artif. Intell. Soft Comput. Res. 5(3), 161–176 (2015)

    Article  Google Scholar 

  34. Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification, by boosting fuzzy classifiers. Inf. Sci. 327, 175–182 (2016)

    Article  MathSciNet  Google Scholar 

  35. Korytkowski, M., Scherer, R., Rutkowski, L.: On combining backpropagation with boosting. In: Proceedings of the 2006 International Joint Conference on Neural Networks, IEEE World Congress on Computational Intelligence, pp. 1274–1277 (2006)

    Google Scholar 

  36. Lan, K., Sekiyama, K.: Autonomous viewpoint selection of robot based on aesthetic evaluation of a scene. J. Artif. Intell. Soft Comput. Res. 6(4), 255–265 (2016)

    Article  Google Scholar 

  37. Lumini, A., Nanni, L.: Ensemble of on-line signature matchers based on overcomplete feature generation. Expert Syst. Appl. 36, 5291–5296 (2009)

    Article  Google Scholar 

  38. Łapa, K., Cpałka, K., Galushkin, A.I.: A new interpretability criteria for neuro-fuzzy systems for nonlinear classification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9119, pp. 448–468. Springer, Cham (2015). doi:10.1007/978-3-319-19324-3_41

    Chapter  Google Scholar 

  39. Łapa, K., Cpałka, K., Wang, L.: New method for design of fuzzy systems for nonlinear modelling using different criteria of interpretability. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8467, pp. 217–232. Springer, Cham (2014). doi:10.1007/978-3-319-07173-2_20

    Chapter  Google Scholar 

  40. Łapa, K., Przybył, A., Cpałka, K.: A new approach to designing interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS, vol. 7895, pp. 523–534. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38610-7_48

    Chapter  Google Scholar 

  41. Łapa, K., Szczypta, J., Venkatesan, R.: Aspects of structure and parameters selection of control systems using selected multi-population algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9120, pp. 247–260. Springer, Cham (2015). doi:10.1007/978-3-319-19369-4_23

    Chapter  Google Scholar 

  42. Nanni, L.: An advanced multi-matcher method for on-line signature verification featuring global features and tokenised random numbers. Neurocomputing 69, 2402–2406 (2006)

    Article  Google Scholar 

  43. Nanni, L., Lumini, A.: Ensemble of Parzen window classifiers for on-line signature verification. Neurocomputing 68, 217–224 (2005)

    Article  Google Scholar 

  44. Nanni, L., Lumini, A.: Advanced methods for two-class problem formulation for on-line signature verification. Neurocomputing 69, 854–857 (2006)

    Article  Google Scholar 

  45. Ortega-Garcia, J., Fierrez-Aguilar, J., Simon, D., Gonzalez, J., Faundez-Zanuy, M., Espinosa, V., Satue, A., Hernaez, I., Igarza, J.J., Vivaracho, C., Escudero, D., Moro, Q.I.: MCYT baseline corpus: a bimodal biometric database. IEE Proc. Vis. Image Signal Process 150, 395–401 (2003)

    Article  Google Scholar 

  46. Patgiri, C., Sarma, M., Sarma, K.K.: A class of neuro-computational methods for assamese fricative classification. J. Artif. Intell. Soft Comput. Res. 5(1), 59–70 (2015)

    Article  Google Scholar 

  47. Prasad, M., Liu, Y., Li, D., Lin, C., Shah, R.R., Kaiwartya, O.P.: A new mechanism for data visualization with Tsk-type preprocessed collaborative fuzzy rule based system. J. Artif. Intell. Soft Comput. Res. 7(1), 33–46 (2017)

    Article  Google Scholar 

  48. Przybył, A., Er, M.J.: The idea for the integration of neuro-fuzzy hardware emulators with real-time network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 279–294. Springer, Cham (2014). doi:10.1007/978-3-319-07173-2_25

    Chapter  Google Scholar 

  49. Przybył, A., Er, M.J.: A new approach to designing of intelligent emulators working in a distributed environment. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 546–558. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_48

    Google Scholar 

  50. Przybył, A., Er, M.J.: The method of hardware implementation of fuzzy systems on FPGA. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9692, pp. 284–298. Springer, Cham (2016). doi:10.1007/978-3-319-39378-0_25

    Google Scholar 

  51. Przybył, A., Jelonkiewicz, J.: Genetic algorithm for observer parameters tuning in sensorless induction motor drive. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing. Advances in Soft Computing, vol. 19, pp. 376–381. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  52. Przybył, A., Smoląg, J., Kimla, P.: Distributed control system based on real time ethernet for computer numerical controlled machine tool. Przeglad Elektrotechniczny 86(2), 342–346 (2010). (in Polish)

    Google Scholar 

  53. Rutkowska, A.: Influence of membership functions shape on portfolio optimization results. J. Artif. Intell. Soft Comput. Res. 6(1), 45–54 (2016)

    Article  Google Scholar 

  54. Rutkowski, L.: Sequential estimates of probability densities by orthogonal series and their application in pattern classification. IEEE Trans. Syst. Man Cybern. 10(12), 918–920 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  55. Rutkowski, L.: Sequential pattern-recognition procedures derived from multiple Fourier-series. Pattern Recognit. Lett. 8(4), 213–216 (1988)

    Article  MATH  Google Scholar 

  56. Rutkowski, L.: Non-parametric learning algorithms in time-varying environments. Signal Process. 182, 129–137 (1989)

    Article  Google Scholar 

  57. Rutkowski, L.: Adaptive probabilistic neural networks for pattern classification in time-varying environment. IEEE Trans. Neural Netw. 15(4), 811–827 (2004)

    Article  Google Scholar 

  58. Rutkowski, L.: Computational Intelligence. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  59. Rutkowski L., Cpałka K.: A general approach to neuro-fuzzy systems. In: The 10th IEEE International Conference on Fuzzy Systems, Melbourne, pp. 1428–1431 (2001)

    Google Scholar 

  60. Rutkowski, L., Cpałka, K.: Flexible weighted neuro-fuzzy systems. In: Proceedings of the 9th International Conference on Neural Information Processing (ICONIP 2002), Orchid Country Club, Singapore, 18–22 November 2002

    Google Scholar 

  61. Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy reasoning. Control Cybern. 31(2), 297–308 (2002)

    MATH  Google Scholar 

  62. Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: Proceedings of the 2nd Euro-International Symposium on Computation Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 76, pp. 85–90 (2002)

    Google Scholar 

  63. Rutkowski, L., Cpałka, K.: Neuro-fuzzy systems derived from quasi-triangular norms. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Budapest, 26–29 July, vol. 2, pp. 1031–1036 (2004)

    Google Scholar 

  64. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: A new method for data stream mining based on the misclassification error. IEEE Trans. Neural Netw. Learn. Syst. 26, 1048–1059 (2015)

    Article  MathSciNet  Google Scholar 

  65. Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining data streams based on the McDiarmid’s bound. IEEE Trans. Knowl. Data Eng. 25(6), 1272–1279 (2013)

    Article  Google Scholar 

  66. Rutkowski, L., Przybył, A., Cpałka, K.: Novel online speed profile generation for industrial machine tool based on flexible neuro-fuzzy approximation. IEEE Trans. Ind. Electron. 59(2), 1238–1247 (2012)

    Article  Google Scholar 

  67. Stanovov, V., Semenkin, E., Semenkina, O.: Self-configuring hybrid evolutionary algorithm for fuzzy imbalanced classification with adaptive instance selection. J. Artif. Intell. Soft Comput. Res. 6(3), 173–188 (2016)

    Article  Google Scholar 

  68. Szczypta, J., Przybył, A., Cpałka, K.: Some aspects of evolutionary designing optimal controllers. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS, vol. 7895, pp. 91–100. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38610-7_9

    Chapter  Google Scholar 

  69. Tennyson, M.F., Kuester, D.A., Casteel, J., Nikolopoulos, C.: Accessible robots for improving social skills of individuals with autism. J. Artif. Intell. Soft Comput. Res. 6(4), 267–277 (2016)

    Article  Google Scholar 

  70. Weerakoon, T., Ishii, K., Nassiraei, A.A.F.: An artificial potential field based mobile robot navigation method to prevent from deadlock. J. Artif. Intell. Soft Comput. Res. 5(3), 189–203 (2015)

    Article  Google Scholar 

  71. Wei, H.: A bio-inspired integration method for object semantic representation. J. Artif. Intell. Soft Comput. Res. 6(3), 137–154 (2016)

    Article  Google Scholar 

  72. Yang, C.H., Moi, S.H., Lin, Y.D., Chuang, L.Y.: Genetic algorithm combined with a local search method for identifying susceptibility genes. J. Artif. Intell. Soft Comput. Res. 6, 203–212 (2016)

    Article  Google Scholar 

  73. Yeung, D.-Y., Chang, H., Xiong, Y., George, S., Kashi, R., Matsumoto, T., Rigoll, G.: SVC2004: first international signature verification competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 16–22. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25948-0_3

    Chapter  Google Scholar 

  74. Yin, Z., O’Sullivan, C., Brabazon, A.: An analysis of the performance of genetic programming for realised volatility forecasting. J. Artif. Intell. Soft Comput. Res. 6(3), 155–172 (2016)

    Article  Google Scholar 

  75. Zalasiński, M.: New algorithm for on-line signature verification using characteristic global features. In: Wilimowska, Z., Borzemski, L., Grzech, A., Świątek, J. (eds.) ISAT 2015. AISC, vol. 432, pp. 137–146. Springer, Cham (2016). doi:10.1007/978-3-319-28567-2_12

    Google Scholar 

  76. Zalasiński, M., Cpałka, K.: A new method of on-line signature verification using a flexible fuzzy one-class classifier, pp. 38–53. Academic Publishing House EXIT (2011)

    Google Scholar 

  77. Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification using selected discretization points groups. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS, vol. 7894, pp. 493–502. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38658-9_44

    Chapter  Google Scholar 

  78. Zalasiński, M., Cpałka, K.: New algorithm for on-line signature verification using characteristic hybrid partitions. In: Wilimowska, Z., Borzemski, L., Grzech, A., Świątek, J. (eds.) ISAT 2015. AISC, vol. 432, pp. 147–157. Springer, Cham (2016). doi:10.1007/978-3-319-28567-2_13

    Google Scholar 

  79. Zalasiński, M., Cpałka, K., Er, M.J.: New method for dynamic signature verification using hybrid partitioning. In: Artificial Intelligence and Soft Computing. Lecture Notes in Computer Science, vol. 8467, pp. 236–250. Springer (2014)

    Google Scholar 

  80. Zalasiński, M., Cpałka, K., Hayashi, Y.: New method for dynamic signature verification based on global features. In: Artificial Intelligence and Soft Computing. Lecture Notes in Computer Science, vol. 8467, pp. 251–265. Springer (2014)

    Google Scholar 

  81. Zalasiński, M., Cpałka, K., Hayashi, Y.: A new approach to the dynamic signature verification aimed at minimizing the number of global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 218–231. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_20

    Google Scholar 

  82. Zalasiński, M., Cpałka, K., Rakus-Andersson, E.: An idea of the dynamic signature verification based on a hybrid approach. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 232–246. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_21

    Google Scholar 

  83. Zalasiński, M., Łapa, K., Cpałka, K.: New algorithm for evolutionary selection of the dynamic signature global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS, vol. 7895, pp. 113–121. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38610-7_11

    Chapter  Google Scholar 

Download references

Acknowledgment

The project was financed by the National Science Centre (Poland) on the basis of the decision number DEC-2012/05/B/ST7/02138. The work presented in this paper was also supported by the grant number BS/MN 1-109-301/16/P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Zalasiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zalasiński, M., Cpałka, K., Hayashi, Y. (2017). A Method for Genetic Selection of the Most Characteristic Descriptors of the Dynamic Signature. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2017. Lecture Notes in Computer Science(), vol 10245. Springer, Cham. https://doi.org/10.1007/978-3-319-59063-9_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59063-9_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59062-2

  • Online ISBN: 978-3-319-59063-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics