Skip to main content

Application of Stacked Autoencoders to P300 Experimental Data

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10245))

Abstract

Deep learning has emerged as a new branch of machine learning in recent years. Some of the related algorithms have been reported to beat state-of-the-art approaches in many applications. The main aim of this paper is to verify one of the deep learning algorithms, specifically a stacked autoencoder, to detect the P300 component. This component, as a specific brain response, is widely used in the systems based on brain-computer interface. A simple brain-computer interface experiment more than 200 school-age participants was performed to obtain large datasets containing the P300 component. After feature extraction the collected data were split into the training and testing sets. State-of-the art BCI classifiers (such as LDA, SVM, or Bayesian LDA) were applied to the data and then compared with the results of stacked autoencoders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wolpaw, J., Birbaumer, N., Heetderks, W., McFarland, D., Peckham, P., Schalk, G., Donchin, E., Quatrano, L., Robinson, C., Vaughan, T.: Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng. 8(2), 164–173 (2000)

    Article  Google Scholar 

  2. McFarland, D.J., Wolpaw, J.R.: Brain-computer interfaces for communication and control. Commun. ACM 54(5), 60–66 (2011)

    Article  Google Scholar 

  3. Luck, S.: An Introduction to the Event-Related Potential Technique: Cognitive Neuroscience. MIT Press, Cambridge (2005)

    Google Scholar 

  4. Farwell, L.A., Donchin, E.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510–523 (1988)

    Article  Google Scholar 

  5. Fazel-Rezai, R., Allison, B.Z., Guger, C., Sellers, E.W., Kleih, S.C., Kübler, A.: P300 brain computer interface: current challenges and emerging trends. Front. Neuroeng. 5(14), 14 (2012)

    Google Scholar 

  6. Thulasidas, M., Guan, C., Wu, J.: Robust classification of EEG signal for brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 14(1), 24–29 (2006)

    Article  Google Scholar 

  7. Guger, C., Daban, S., Sellers, E., Holzner, C., Krausz, G., Carabalona, R., Gramatica, F., Edlinger, G.: How many people are able to control a P300-based brain-computer interface (BCI)? Neurosci. Lett. 462(1), 94–98 (2009)

    Article  Google Scholar 

  8. Hoffmann, U., Vesin, J.M., Ebrahimi, T., Diserens, K.: An efficient P300-based brain-computer interface for disabled subjects. J. Neurosci. Methods 167(1), 115–125 (2008)

    Article  Google Scholar 

  9. Mirghasemi, H., Fazel-Rezai, R., Shamsollahi, M.B.: Analysis of p300 classifiers in brain computer interface speller. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 6205–6208 (2006)

    Google Scholar 

  10. Blankertz, B., Muller, K., Curio, G., Vaughan, T., Schalk, G., Wolpaw, J., Schlogl, A., Neuper, C., Pfurtscheller, G., Hinterberger, T., Schroder, M., Birbaumer, N.: The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials. IEEE Trans. Biomed. Eng. 51(6), 1044–1051 (2004)

    Article  Google Scholar 

  11. Cashero, Z.: Comparison of EEG Preprocessing Methods to Improve the Performance of the P300 Speller. Proquest, Umi Dissertation Publishing (2012)

    Google Scholar 

  12. Sobhani, A.: P300 classification using deep belief nets. Master’s thesis, Colorado State University (2014)

    Google Scholar 

  13. Deng, L., Yu, D.: Deep learning: methods and applications. Found. Trends Sig. Process. 7(34), 197–387 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Arnold, L., Rebecchi, S., Chevallier, S., Paugam-Moisy, H.: An introduction to deep-learning. In: Advances in Computational Intelligence and Machine Learning, ESANN 2011, pp. 477–488, April 2011

    Google Scholar 

  15. Ng, A., Ngiam, J., Foo, C.Y., Mai, Y., Suen, C.: UFLDL Tutorial (2010). http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial

  16. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems 19, pp. 153–160. MIT Press, Cambridge (2007)

    Google Scholar 

  17. Vareka, L., Prokop, T., Stebetak, J., Moucek, R.: Guess the number - applying a simple brain-computer interface to school-age children. In: Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies, vol. 4, BIOSIGNALS, pp. 263–270 (2016)

    Google Scholar 

  18. Vareka, L., Prokop, T., Stebetak, J., Moucek, R.: Guess the number (github repository) (2015). https://github.com/NEUROINFORMATICS-GROUP-FAV-KIV-ZCU/guess_the_number

  19. Quiroga, R., Garcia, H.: Single-trial event-related potentials with wavelet denoising. Clin. Neurophysiol. 114(2), 376–390 (2003)

    Article  Google Scholar 

  20. Delorme, A., Mullen, T., Kothe, C., Acar, Z.A., Bigdely-Shamlo, N., Vankov, A., Makeig, S.: EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing. Intell. Neurosci. 2011, 10:10 (2011)

    Google Scholar 

  21. Blankertz, B., Lemm, S., Treder, M.S., Haufe, S., Müller, K.R.: Single-trial analysis and classification of ERP components - a tutorial. NeuroImage 56(2), 814–825 (2011)

    Article  Google Scholar 

  22. Frank, E., Hall, M., Holmes, G., Kirkby, R., Pfahringer, B., Witten, I.H., Trigg, L.: Weka-a machine learning workbench for data mining. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 1269–1277. Springer, New York (2009)

    Chapter  Google Scholar 

  23. Gibson, A., Nicholson, C., Patterson, J., Warrick, M., Black, A.D., Kokorin, V., Audet, S., Eraly, S.: Deeplearning4j: Distributed, open-source deep learning for Java and Scala on Hadoop and Spark, May 2016

    Google Scholar 

Download references

Acknowledgements

This publication was supported by the UWB grant SGS-2016-018 Data and Software Engineering for Advanced Applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukáš Vařeka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Vařeka, L., Prokop, T., Mouček, R., Mautner, P., Štěbeták, J. (2017). Application of Stacked Autoencoders to P300 Experimental Data. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2017. Lecture Notes in Computer Science(), vol 10245. Springer, Cham. https://doi.org/10.1007/978-3-319-59063-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59063-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59062-2

  • Online ISBN: 978-3-319-59063-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics