Skip to main content

Miniaturization of Multi-Camera Systems

  • Chapter
  • First Online:

Abstract

In this chapter, we present methods for creating and developing miniaturized high definition vision systems inspired by insect eyes. Our approach is based on modeling biological systems with off-the-shelf miniaturized cameras combined with digital circuit design for real-time image processing. We built a 5 mm radius hemispherical compound eye, imaging a 180× 180 field of view while providing more than 1.1 megapixels (emulated ommatidias) as real-time video with an inter-ommatidial angle Δϕ = 0. 5 at 18 mm radial distance. We made an FPGA implementation of the image processing system which is capable of generating 25 fps video with 1080 × 1080 pixel resolution at a 120 MHz processing clock frequency. When compared to similar size insect eye mimicking systems in literature, the system described in this chapter features 1000× resolution increase. To the best of our knowledge, this is the first time that a compound eye with built-in illumination idea is reported. We are offering our miniaturized imaging system for endoscopic applications like colonoscopy or laparoscopic surgery where there is a need for large field of view high definition imagery. For that purpose we tested our system inside a human colon model. We also present the resulting images and videos from the human colon model in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Afshari H, Akin A, Popovic V, Schmid A, Leblebici Y (2012) Real-time FPGA implementation of linear blending vision reconstruction algorithm using a spherical light field camera. In: IEEE workshop on signal processing systems, pp 49–54. doi:10.1109/SiPS.2012.49

    Google Scholar 

  2. Aldalali B et al (2013) Flexible miniaturized camera array inspired by natural visual systems. J Microelectromech Syst 22(6):1254–1256

    Article  Google Scholar 

  3. Ameling S, Wirth S, Paulus D, Lacey G, Vilarino F (2009) Texture-based polyp detection in colonoscopy. In: Bildverarbeitung für die Medizin 2009. Springer, Berlin, pp 346–350

    Chapter  Google Scholar 

  4. Bernal J, Sánchez J, Vilarino F (2012) Towards automatic polyp detection with a polyp appearance model. Pattern Recogn 45(9):3166–3182

    Article  Google Scholar 

  5. Bernal J, Sánchez J, Vilarino F (2013) Impact of image preprocessing methods on polyp localization in colonoscopy frames. In: Engineering in Medicine and Biology Society (EMBC), 2013 35th annual international conference of the IEEE. IEEE, Washington, pp 7350–7354

    Chapter  Google Scholar 

  6. Cogal O, Akin A, Seyid K, Popovic V, Schmid A, Leblebici Y (2014) A new omni-directional multi-camera system for high resolution surveillance. In: Proceeding of SPIE defense and security symposium, Baltimore, MD. doi:10.1117/12.2049698

    Google Scholar 

  7. Cogal O, Popovic V, Leblebici Y (2014) Spherical panorama construction using multi sensor registration priors and its real-time hardware. In: IEEE international symposium on multimedia (ISM). IEEE, Washington

    Google Scholar 

  8. Elahi SF, Wang TD (2011) Future and advances in endoscopy. J Biophotonics 4(7–8):471–481

    Article  Google Scholar 

  9. Floreano D et al (2013) Miniature curved artificial compound eyes. Proc Natl Acad Sci 110(23):9267–9272

    Article  Google Scholar 

  10. Gluck N, Fishman S, Melhem A, Goldfarb S, Halpern Z, Santo E (2014) Su1221 aer-o-scopeTM, a self-propelled pneumatic colonoscope, is superior to conventional colonoscopy in polyp detection. Gastroenterology 146(5, Suppl 1):S-406. http://dx.doi.org/10.1016/S0016-5085(14)61467-0, http://www.sciencedirect.com/science/article/pii/S0016508514614670, 2014 {DDW} Abstract

  11. Gralnek IM (2015) Emerging technological advancements in colonoscopy: Third Eye®; Retroscope®; and Third Eye®; Panoramictm, Fuse®; Full Spectrum Endoscopy®; colonoscopy platform, extra-wide-angle-view colonoscope, and NaviAidtm G-EYEtm balloon colonoscope. Dig Endosc 27(2):223–231. doi:10.1111/den.12382. http://dx.doi.org/10.1111/den.12382

    Article  Google Scholar 

  12. Gralnek IM, Carr-Locke DL, Segol O, Halpern Z, Siersema PD, Sloyer A, Fenster J, Lewis BS, Santo E, Suissa A, Segev M (2013) Comparison of standard forward-viewing mode versus ultrawide-viewing mode of a novel colonoscopy platform: a prospective, multicenter study in the detection of simulated polyps in an in vitro colon model (with video). Gastrointest Endosc 77(3):472–479. http://dx.doi.org/10.1016/j.gie.2012.12.011, http://www.sciencedirect.com/science/article/pii/S0016510712030647

  13. Gu Y, Xie X, Li G, Sun T, Zhang Q, Wang Z, Wang Z (2010) A new system design of the multi-view micro-ball endoscopy system. In: Engineering in Medicine and Biology Society (EMBC), 2010 annual international conference of the IEEE. IEEE, Washington, pp 6409–6412

    Google Scholar 

  14. Hasan N, Gross SA, Gralnek IM, Pochapin M, Kiesslich R, Halpern Z (2014) A novel balloon colonoscope detects significantly more simulated polyps than a standard colonoscope in a colon model. Gastrointest Endosc 80(6):1135–1140. http://dx.doi.org/10.1016/j.gie.2014.04.024, http://www.sciencedirect.com/science/article/pii/S0016510714013923

  15. Jeong JK Ki-Hun, Lee LP (2006) Biologically inspired artificial compound eyes. Science 312(5773):557–561

    Google Scholar 

  16. Land MF (1997) Visual acuity in insects. Annu Rev Entomol 42(1):147–177

    Article  Google Scholar 

  17. Land MF, Nilsson DE (2012) Animal eyes. Oxford University Press, Oxford

    Book  Google Scholar 

  18. Lee LP, Szema R (2005) Inspirations from biological optics for advanced photonic systems. Science 310(5751):1148–1150

    Article  Google Scholar 

  19. Liu J, Wang B, Hu W, Sun P, Li J, Duan H, Si J (2015) Global and local panoramic views for gastroscopy: an assisted method of gastroscopic lesion surveillance. IEEE Trans Biomed Eng PP(99):1. doi:10.1109/TBME.2015.2424438

    Google Scholar 

  20. Lowe DG (1999) Object recognition from local scale-invariant features. In: The proceedings of the seventh IEEE international conference on computer vision, 1999, vol 2. IEEE, Washington, pp 1150–1157

    Chapter  Google Scholar 

  21. Palka J (2006) Diffraction and visual acuity of insects. Science 149(3683):551–553

    Article  Google Scholar 

  22. Peng CH, Cheng CH (2014) A panoramic endoscope design and implementation for minimally invasive surgery. In: 2014 IEEE international symposium on circuits and systems (ISCAS), pp 453–456. doi:10.1109/ISCAS.2014.6865168

    Google Scholar 

  23. Popovic V, Seyid K, Akin A, Cogal O, Afshari H, Schmid A, Leblebici Y (2014) Image blending in a high frame rate FPGA-based multi-camera system. J Signal Process Syst 76:169–184.doi:10.1007/s11265-013-0858-8

    Article  Google Scholar 

  24. Roulet P, Konen P, Villegas M, Thibault S, Garneau PY (2010) 360 endoscopy using panomorph lens technology. In: BiOS. International Society for Optics and Photonics, Bellingham, p 75580T

    Google Scholar 

  25. Rubin M, Bose KP, Kim SH (2014) Mo1517 successful deployment and use of third eye panoramicTMa novel side viewing video {CAP} fitted on a standard colonoscope. Gastrointest Endosc 79(5, Suppl):AB466. http://dx.doi.org/10.1016/j.gie.2014.02.694, http://www.sciencedirect.com/science/article/pii/S0016510714008645. {DDW} 2014ASGE Program and Abstracts {DDW} 2014ASGE Program and Abstracts

  26. Sagawa R, Sakai T, Echigo T, Yagi K, Shiba M, Higuchi K, Arakawa T, Yagi Y (2008) Omnidirectional vision attachment for medical endoscopes. In: The 8th workshop on omnidirectional vision, camera networks and non-classical cameras-OMNIVIS

    Google Scholar 

  27. Seo JM, Koo Ki (2015) Biomimetic multiaperture imaging systems: a review. Sens Mater 27(6):475–486

    Google Scholar 

  28. Seyid K, Popovic V, Cogal O, Akin A, Afshari H, Schmid A, Leblebici Y (2015) A real-time multiaperture omnidirectional visual sensor based on an interconnected network of smart cameras. IEEE Trans Circuits Syst Video Technol 25(2):314–324. doi:10.1109/TCSVT.2014.2355713

    Article  Google Scholar 

  29. Sherk TE (1978) Development of the compound eyes of dragonflies (odonata). III. adult compound eyes. J Exp Zool 203(1):61–79

    Google Scholar 

  30. Song YM, Xie Y, Malyarchuk V, Xiao J, Jung I, Choi KJ, Liu Z, Park H, Lu C, Kim RH, Li R, Crozier KB, Huang Y, Rogers JA (2013) Digital cameras with designs inspired by the arthropod eye. Nature 497(7447):95–99. doi:10.1038/nature12083

    Article  Google Scholar 

  31. Stanek SR, Tavanapong W, Wong J, Oh JH, De Groen PC (2012) Automatic real-time detection of endoscopic procedures using temporal features. Comput Methods Programs Biomed 108(2):524–535

    Article  Google Scholar 

  32. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108. doi:10.3322/caac.21262. http://dx.doi.org/10.3322/caac.21262

    Article  Google Scholar 

  33. Uraoka T, Tanaka S, Matsumoto T, Matsuda T, Oka S, Moriyama T, Higashi R, Saito Y (2013) A novel extra-wide-angle-view colonoscope: a simulated pilot study using anatomic colorectal models. Gastrointest Endosc 77(3):480–483. http://dx.doi.org/10.1016/j.gie.2012.08.037, http://www.sciencedirect.com/science/article/pii/S0016510712026582

  34. Wang RCC, Deen MJ, Armstrong D, Fang Q (2011) Development of a catadioptric endoscope objective with forward and side views. J Biomed Opt 16(6):066015–066015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Popovic, V., Seyid, K., Cogal, Ö., Akin, A., Leblebici, Y. (2017). Miniaturization of Multi-Camera Systems. In: Design and Implementation of Real-Time Multi-Sensor Vision Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-59057-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59057-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59056-1

  • Online ISBN: 978-3-319-59057-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics