Skip to main content

State-of-the-Art Multi-Camera Systems

  • Chapter
  • First Online:

Abstract

This chapter presents both pioneering and state-of-the-art algorithms and systems for acquisition of images suitable for wide FOV imaging. The most common systems include translational and rotational single camera systems, catadioptric cameras, multi-camera systems, and finally, commercially available standard and light-field cameras. We also introduce the systems mimicking insect eye, and how camera systems can be used to estimate depth of the scene.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agarwala A, Dontcheva M, Agrawala M, Drucker S, Colburn A, Curless B, Salesin D, Cohen M (2004) Interactive digital photomontage. ACM Trans Graph 23(3):294–302. doi:10.1145/1015706.1015718

    Article  Google Scholar 

  2. Akin A, Baz I, Atakan B, Boybat I, Schmid A, Leblebici Y (2013) A hardware-oriented dynamically adaptive disparity estimation algorithm and its real-time hardware. In: Proceedings of the 23rd ACM international conference on great lakes symposium on VLSI, GLSVLSI ’13. ACM, New York, pp 155–160. doi:10.1145/2483028.2483082. http://doi.acm.org/10.1145/2483028.2483082

    Chapter  Google Scholar 

  3. Akin A, Baz I, Manuel L, Schmid A, Leblebici Y (2013) Compressed look-up-table based real-time rectification algorithm and its hardware. In: Proceedings of the IFIP/IEEE international conference on VLSI-SOC

    Google Scholar 

  4. Akin A, Gaemperle LM, Najibi H, Schmid A, Leblebici Y (2015) Enhanced compressed look-up-table based real-time rectification hardware. VLSI-SoC: at the crossroads of emerging trends. Springer, Berlin

    Google Scholar 

  5. Anguelov D, Dulong C, Filip D, Frueh C, Lafon S, Lyon R, Ogale A, Vincent L, Weaver J (2010) Google street view: capturing the world at street level. Computer 43(6):32–38. doi:10.1109/MC.2010.170

    Article  Google Scholar 

  6. Baker S, Nayar S (1998) A theory of catadioptric image formation. In: IEEE international conference on computer vision (ICCV), pp 35–42

    Google Scholar 

  7. Belbachir A, Pflugfelder R, Gmeiner R (2010) A neuromorphic smart camera for real-time 360 distortion-free panoramas. In: Proceedings of IEEE international conference on distributed smart cameras, pp 221–226

    Google Scholar 

  8. Belbachir A, Mayerhofer M, Matolin D, Colineau J (2012) Real-time 360 panoramic views using BiCa360, the fast rotating dynamic vision sensor to up to 10 rotations per sec. In: Proceedings of IEEE international conference on circuits and systems, pp 727–730. doi:10.1109/ISCAS.2012.6272139

    Google Scholar 

  9. Bouguet JY (2004) Camera calibration toolbox for matlab. http://www.vision.caltech.edu/bouguetj/ [Online]. Available: http://www.vision.caltech.edu/bouguetj/

  10. Brady DJ, Gehm ME, Stack RA, Marks DL, Kittle DS, Golish DR, Vera EM, Feller SD (2012) Multiscale gigapixel photography. Nature 486(7403):386–389

    Article  Google Scholar 

  11. Brown M, Lowe D (2007) Automatic panoramic image stitching using invariant features. Int J Comput Vis 74(1):59–73

    Article  Google Scholar 

  12. Brückner A, Duparré J, Dannberg P, Bräuer A, Tünnermann A (2007) Artificial neural superposition eye. Opt Express 15(19):11922–11933. doi:10.1364/OE.15.011922. http://www.opticsexpress.org/abstract.cfm?URI=oe-15-19-11922

  13. Brückner A, Duparré J, Leitel R, Dannberg P, Bräuer A, Tünnermann A (2010) Thin wafer-level camera lenses inspired by insect compound eyes. Opt Express 18(24): 24379–24394. doi:10.1364/OE.18.024379. http://www.opticsexpress.org/abstract.cfm?URI=oe-18-24-24379

  14. Burt P, Adelson E (1983) A multiresolution spline with application to image mosaics. ACM Trans Graph 2(4):217–236. doi:10.1145/245.247

    Article  Google Scholar 

  15. Chang NC, Tsai TH, Hsu BH, Chen YC, Chang TS (2010) Algorithm and architecture of disparity estimation with mini-census adaptive support weight. IEEE Trans Circuits Syst Video Technol 20(6):792–805

    Article  Google Scholar 

  16. Chen L, Jia Y, Li M (2012) An FPGA-based RGBD imager. Mach Vis Appl 23(3):513–525

    Article  Google Scholar 

  17. Cogal O, Akin A, Seyid K, Popovic V, Schmid A, Leblebici Y (2014) A new omni-directional multi-camera system for high resolution surveillance. In: Proceeding of SPIE defense and security symposium, Baltimore, MD. doi:10.1117/12.2049698

    Google Scholar 

  18. Cossairt OS, Miau D, Nayar SK (2011) Gigapixel computational imaging. In: Proceedings of IEEE international conference on computational photography, pp 1–8

    Google Scholar 

  19. Dik VK (2015) Prevention of colorectal cancer development and mortality: from epidemiology to endoscopy. PhD thesis

    Google Scholar 

  20. Efros AA, Freeman WT (2001) Image quilting for texture synthesis and transfer. In: ACM SIGGRAPH 2001, pp 341–346

    Google Scholar 

  21. Elahi SF, Wang TD (2011) Future and advances in endoscopy. J Biophotonics 4(7–8):471–481

    Article  Google Scholar 

  22. Farbman Z, Hoffer G, Lipman Y, Cohen-Or D, Lischinski D (2009) Coordinates for instant image cloning. ACM Trans Graph 28(3):1–9

    Article  Google Scholar 

  23. Floreano D (2013) Miniature curved artificial compound eyes. Proc Natl Acad Sci 110(23):9267–9272

    Article  Google Scholar 

  24. Fullview (2015) http://www.fullview.com. Accessed on 24 Oct 2015

  25. Georgoulas C, Andreadis I (2009) A real-time occlusion aware hardware structure for disparity map computation. In: Image analysis and processing–ICIAP 2009. Springer, Berlin, pp 721–730

    Chapter  Google Scholar 

  26. Gluck N, Fishman S, Melhem A, Goldfarb S, Halpern Z, Santo E (2014) Su1221 aer-o-scopeTM, a self-propelled pneumatic colonoscope, is superior to conventional colonoscopy in polyp detection. Gastroenterology 146(5, Suppl 1):S-406. http://dx.doi.org/10.1016/S0016-5085(14)61467-0, http://www.sciencedirect.com/science/article/pii/S0016508514614670. 2014 {DDW} Abstract

  27. Gralnek IM (2015) Emerging technological advancements in colonoscopy: Third Eye®; Retroscope®; and Third Eye®; Panoramictm, Fuse®; Full Spectrum Endoscopy®; colonoscopy platform, Extra-wide-Angle-View colonoscope, and naviaidtm g-eyetm balloon colonoscope. Dig Endosc 27(2):223–231. doi:10.1111/den.12382. http://dx.doi.org/10.1111/den.12382

    Article  Google Scholar 

  28. Gralnek IM, Carr-Locke DL, Segol O, Halpern Z, Siersema PD, Sloyer A, Fenster J, Lewis BS, Santo E, Suissa A, Segev M (2013) Comparison of standard forward-viewing mode versus ultrawide-viewing mode of a novel colonoscopy platform: a prospective, multicenter study in the detection of simulated polyps in an in vitro colon model (with video). Gastrointest Endosc 77(3):472–479. http://dx.doi.org/10.1016/j.gie.2012.12.011, http://www.sciencedirect.com/science/article/pii/S0016510712030647

  29. Greisen P, Heinzle S, Gross M, Burg AP (2011) An FPGA-based processing pipeline for high-definition stereo video. EURASIP J Image Video Process 2011(1):1–13

    Article  Google Scholar 

  30. Gribbon K, Johnston C, Bailey D (2003) A real-time FPGA implementation of a barrel distortion correction algorithm with bilinear interpolation. In: Image and vision computing, Palmerston North, pp 408–413

    Google Scholar 

  31. Gu Y, Xie X, Li G, Sun T, Zhang Q, Wang Z, Wang Z (2010) A new system design of the multi-view micro-ball endoscopy system. In: 2010 annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, New York, pp 6409–6412

    Google Scholar 

  32. Hasan N, Gross SA, Gralnek IM, Pochapin M, Kiesslich R, Halpern Z (2014) A novel balloon colonoscope detects significantly more simulated polyps than a standard colonoscope in a colon model. Gastrointest Endosc 80(6):1135–1140. http://dx.doi.org/10.1016/j.gie.2014.04.024, http://www.sciencedirect.com/science/article/pii/S0016510714013923

  33. Jeong KH, Lee LP (2006) Biologically inspired artificial compound eyes. Science 312(5773):557–561

    Article  Google Scholar 

  34. Jia J, Sun J, Tang CK, Shum HY (2006) Drag-and-drop pasting. In: ACM SIGGRAPH, pp 631–637

    Google Scholar 

  35. Jin S, Cho J, Dai Pham X, Lee KM, Park SK, Kim M, Jeon JW (2010) FPGA design and implementation of a real-time stereo vision system. IEEE Trans Circuits Syst Video Technol 20(1):15–26

    Article  Google Scholar 

  36. Klaus A, Sormann M, Karner K (2006) Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: 18th international conference on pattern recognition, 2006. ICPR 2006, vol 3. IEEE, New York, pp 15–18

    Google Scholar 

  37. Kogeto J (2015) http://kogeto.com/jo.html. Accessed on 24 Oct 2015

  38. Land MF (1997) Visual acuity in insects. Annu Rev Entomol 42(1):147–177

    Article  Google Scholar 

  39. Land MF, Nilsson DE (2012) Animal eyes. Oxford University Press, Oxford

    Book  Google Scholar 

  40. Lee SH, Sharma S (2011) Real-time disparity estimation algorithm for stereo camera systems. IEEE Trans Consum Electron 57(3):1018–1026

    Article  Google Scholar 

  41. Lee LP, Szema R (2005) Inspirations from biological optics for advanced photonic systems. Science 310(5751):1148–1150

    Article  Google Scholar 

  42. Lee C, Song H, Choi B, Ho YS (2011) 3d scene capturing using stereoscopic cameras and a time-of-flight camera. IEEE Trans Consum Electron 57(3):1370–1376. doi:10.1109/TCE.2011.6018896

    Article  Google Scholar 

  43. Levin A, Zomet A, Peleg S, Weiss Y (2004) Seamless image stitching in the gradient domain. In: Computer vision - ECCV 2004. Lecture notes in computer science, vol 3024. Springer, Berlin, Heidelberg, pp 377–389. doi:10.1007/978-3-540-24673-2_31

  44. Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques, New York, SIGGRAPH ’96, pp 31–42. doi:http://doi.acm.org/10.1145/237170.237199

  45. Li L, Yi AY (2010) Development of a 3d artificial compound eye. Opt Express 18(17):18125–18137

    Article  Google Scholar 

  46. Liu J, Wang B, Hu W, sun P, Li J, Duan H, Si J (2015) Global and local panoramic views for gastroscopy: an assisted method of gastroscopic lesion surveillance. IEEE Trans Biomed Eng (99):1–1. doi:10.1109/TBME.2015.2424438

    Google Scholar 

  47. Luke GP, Wright CH, Barrett SF (2012) A multiaperture bioinspired sensor with hyperacuity. IEEE Sensors J 12(2):308–314

    Article  Google Scholar 

  48. Lytro (2015) http://lytro.com. Accessed on 24 Oct 2015

  49. Majumder A, Seales W, Gopi M, Fuchs H (1999) Immersive teleconferencing: a new algorithm to generate seamless panoramic video imagery. In: Proceedings of the seventh ACM international conference on multimedia (Part 1), pp 169–178

    Google Scholar 

  50. Mei X, Sun X, Zhou M, Jiao S, Wang H, Zhang X (2011) On building an accurate stereo matching system on graphics hardware. In: 2011 IEEE international conference on computer vision workshops (ICCV workshops). IEEE, New York, pp 467–474

    Chapter  Google Scholar 

  51. Microsoft (2008) Kinect. http://www.microsoft.com/en-us/kinectforwindows/ [Online]

  52. Miyajima Y, Maruyama T (2003) A real-time stereo vision system with FPGA. In: Cheung PYK, Constantinides G (eds) Field programmable logic and application. Lecture notes in computer science, vol 2778. Springer, Berlin, Heidelberg, pp 448–457. doi:10.1007/978-3-540-45234-8_44. http://dx.doi.org/10.1007/978-3-540-45234-8_44

  53. Motten A, Claesen L, Pan Y (2012) Trinocular disparity processor using a hierarchic classification structure. In: 2012 IEEE/IFIP 20th international conference on VLSI and system-on-chip (VLSI-SoC). IEEE, New York, pp 247–250

    Google Scholar 

  54. Mozerov M, Gonzàlez J, Roca X, Villanueva JJ (2009) Trinocular stereo matching with composite disparity space image. In: 2009 16th IEEE international conference on image processing (ICIP). IEEE, New York, pp 2089–2092

    Chapter  Google Scholar 

  55. Nayar S (1997) Catadioptric omnidirectional camera. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 482–488

    Google Scholar 

  56. Nayar S, Karmarkar A (2000) 360 x 360 Mosaics. In: IEEE conference on computer vision and pattern recognition (CVPR), vol 2, pp 388–395

    Google Scholar 

  57. Nayar SK, Peri V (1999) Folded catadioptric cameras. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, pp 217–223

    Google Scholar 

  58. Neumann U, Pintaric T, Rizzo A (2000) Immersive panoramic video. In: Proceedings of the eighth ACM international conference on multimedia, MULTIMEDIA ’00. ACM, New York, pp 493–494. doi:10.1145/354384.376408. http://doi.acm.org/10.1145/354384.376408

    Chapter  Google Scholar 

  59. Occipital (2012) Structure sensor. http://structure.io/ [Online]

  60. Palka J (2006) Diffraction and visual acuity of insects. Science 149(3683):551–553

    Article  Google Scholar 

  61. Park DH, Ko HS, Kim JG, Cho JD (2011) Real time rectification using differentially encoded lookup table. In: Proceedings of the 5th international conference on ubiquitous information management and communication. ACM, New York, p 47

    Google Scholar 

  62. Peleg S, Herman J (1997) Panoramic mosaics by manifold projection. In: IEEE conference on computer vision and pattern recognition, San Juan, Puerto Rico, pp 338–343. doi:10.1109/CVPR.1997.609346

    Chapter  Google Scholar 

  63. Pelican Imaging (2015) http://pelicanimaging.com. Accessed on 24 Oct 2015

  64. Peng CH, Cheng CH (2014) A panoramic endoscope design and implementation for minimally invasive surgery. In: 2014 IEEE international symposium on circuits and systems (ISCAS), pp 453–456. doi:10.1109/ISCAS.2014.6865168

    Google Scholar 

  65. Perez P, Gangnet M, Blake A (2003) Poisson image editing. ACM Trans Graph 22(3):313–318. doi:10.1145/882262.882269

    Article  Google Scholar 

  66. Pointgrey (2015) Ladybug. https://www.ptgrey.com/360-degree-spherical-camera-systems. Accessed on 24 Oct 2015

  67. Rander P, Narayanan PJ, Kanade T (1997) Virtualized reality: constructing time-varying virtual worlds from real world events. In: Proceedings of IEEE visualization ’97, pp 277–284

    Google Scholar 

  68. Raytrix (2015) http://raytrix.de. Accessed on 24 Oct 2015

  69. Richardt C, Pritch Y, Zimmer H, Sorkine-Hornung A (2013) Megastereo: constructing high-resolution stereo panoramas. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR)

    Google Scholar 

  70. Ricoh (2015) THETA. https://theta360.com/. Accessed on 24 Oct 2015

  71. Roulet P, Konen P, Villegas M, Thibault S, Garneau PY (2010) 360 endoscopy using panomorph lens technology. In: BiOS. International Society for Optics and Photonics, p 75580T

    Google Scholar 

  72. Rubin M, Bose KP, Kim SH (2014) Mo1517 successful deployment and use of third eye panoramicTM a novel side viewing video {CAP} fitted on a standard colonoscope. Gastrointest Endosc 79(5, Suppl):AB466. doi:http://dx.doi.org/10.1016/j.gie.2014.02.694. http://www.sciencedirect.com/science/article/pii/S0016510714008645. {DDW} 2014ASGE Program and Abstracts {DDW} 2014ASGE Program and Abstracts

  73. Sagawa R, Sakai T, Echigo T, Yagi K, Shiba M, Higuchi K, Arakawa T, Yagi Y (2008) Omnidirectional vision attachment for medical endoscopes. In: The 8th workshop on omnidirectional vision, camera networks and non-classical cameras-OMNIVIS

    Google Scholar 

  74. Sarachik KB (1989) Characterising an indoor environment with a mobile robot and uncalibrated stereo. In: Proceedings of IEEE international conference on robotics and automation, pp 984–989. doi:10.1109/ROBOT.1989.100109

    Google Scholar 

  75. Saxena A, Chung SH, Ng AY (2008) 3-d depth reconstruction from a single still image. Int J Comput Vis 76(1):53–69

    Article  Google Scholar 

  76. Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vis 47(1–3):7–42

    Article  MATH  Google Scholar 

  77. Schreer O, Feldmann I, Weissig C, Kauff P, Schafer R (2013) Ultrahigh-resolution panoramic imaging for format-agnostic video production. Proc IEEE 101(1):99–114. doi:10.1109/JPROC.2012.2193850

    Article  Google Scholar 

  78. Seitz (2015) Roundshot. http://www.roundshot.com. Accessed on 24 Oct 2015

  79. Shum HY, He LW (1999) Rendering with concentric mosaics. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques, SIGGRAPH ’99. ACM Press/Addison-Wesley, New York, pp 299–306. doi:10.1145/311535.311573

    Chapter  Google Scholar 

  80. Sinha SN (2014) Pan-Tilt-Zoom (PTZ) camera. In: Ikeuchi K (ed) Computer vision. Springer US, New York, pp 581–586. doi:10.1007/978-0-387-31439-6_496

    Chapter  Google Scholar 

  81. Skolnik MI (1962) Introduction to radar. Radar handbook. McGraw-Hill, New York, p 2

    Google Scholar 

  82. Son HS, Bae Kr, Ok SH, Lee YH, Moon B (2012) A rectification hardware architecture for an adaptive multiple-baseline stereo vision system. In: Communication and networking. Springer, New York, pp 147–155

    Google Scholar 

  83. Song YM, Xie Y, Malyarchuk V, Xiao J, Jung I, Choi KJ, Liu Z, Park H, Lu C, Kim RH, Li R, Crozier KB, Huang Y, Rogers JA (2013) Digital cameras with designs inspired by the arthropod eye. Nature 497(7447):95–99. doi:10.1038/nature12083

    Article  Google Scholar 

  84. Su MS, Hwang WL, Cheng KY (2001) Variational calculus approach to multiresolution image mosaic. In: Proceedings of international conference on image processing, vol 2, pp 245 –248. doi:10.1109/ICIP.2001.958470

    Google Scholar 

  85. Szeliski R, Shum HY (1997) Creating full view panoramic image mosaics and environment maps. In: Proceedings of the conference on computer graphics and interactive techniques. SIGGRAPH ’97. ACM, New York, pp 251–258. http://dx.doi.org/10.1145/258734.258861

  86. Szeliski R, Uyttendaele M, Steedly D (2011) Fast Poisson blending using multi-splines. In: IEEE international conference on computational photography (ICCP). doi:10.1109/ICCPHOT.2011.5753119

    Google Scholar 

  87. Tang WK, Wong TT, Heng PA (2005) A system for real-time panorama generation and display in tele-immersive applications. IEEE Trans Multimedia 7(2):280–292

    Article  Google Scholar 

  88. Tanida J (2001) Thin observation module by bound optics (tombo): concept and experimental verification. Appl Opt 40(11):1806–1813

    Article  Google Scholar 

  89. Tanida J, Kagawa K, Fujii K, Horisaki R (2009) A computational compound imaging system based on irregular array optics. In: Frontiers in optics 2009/laser science XXV/Fall 2009 OSA optics & photonics technical digest. Optical Society of America, p CWB1. doi:10.1364/COSI.2009.CWB1. http://www.osapublishing.org/abstract.cfm?URI=COSI-2009-CWB1

  90. Taylor D (1996) Virtual camera movement: the way of the future? Am Cinematographer 77(8):93–100

    Google Scholar 

  91. Ttofis C, Hadjitheophanous S, Georghiades A, Theocharides T (2013) Edge-directed hardware architecture for real-time disparity map computation. IEEE Trans Comput 62(4):690–704

    Article  MathSciNet  Google Scholar 

  92. Uraoka T, Tanaka S, Matsumoto T, Matsuda T, Oka S, Moriyama T, Higashi R, Saito Y (2013) A novel extra-wide-angle—view colonoscope: a simulated pilot study using anatomic colorectal models. Gastrointest Endosc 77(3):480–483. http://dx.doi.org/10.1016/j.gie.2012.08.037, http://www.sciencedirect.com/science/article/pii/S0016510712026582

  93. Vancea C, Nedevschi S (2007) Lut-based image rectification module implemented in FPGA. In: 2007 IEEE international conference on intelligent computer communication and processing. IEEE, New York, pp 147–154

    Chapter  Google Scholar 

  94. Velodyne (2008) Hdl-g4e. http://velodynelidar.com/lidar/hdlproducts/hdl64e.aspx [Online]

  95. Venkataraman K, Lelescu D, Duparré J, McMahon A, Molina G, Chatterjee P, Mullis R, Nayar S (2013) Picam: an ultra-thin high performance monolithic camera array. ACM Trans Graph 32(6):166:1–166:13. doi:10.1145/2508363.2508390. http://doi.acm.org/10.1145/2508363.2508390

  96. Viollet S, Godiot S, Leitel R, Buss W, Breugnon P, Menouni M, Juston R, Expert F, Colonnier F, L’Eplattenier G et al (2014) Hardware architecture and cutting-edge assembly process of a tiny curved compound eye. Sensors 14(11):21702–21721

    Article  Google Scholar 

  97. Wang ZF, Zheng ZG (2008) A region based stereo matching algorithm using cooperative optimization. In: IEEE conference on computer vision and pattern recognition, 2008. CVPR 2008. IEEE, New York, pp 1–8

    Google Scholar 

  98. Wang RCC, Deen MJ, Armstrong D, Fang Q (2011) Development of a catadioptric endoscope objective with forward and side views. J Biomed Opt 16(6):066015–066015

    Article  Google Scholar 

  99. Wilburn B, Joshi N, Vaish V, Talvala EV, Antunez E, Barth A, Adams A, Horowitz M, Levoy M (2005) High performance imaging using large camera arrays. ACM Trans Graph 24:765–776. doi:10.1145/1073204.1073259

    Article  Google Scholar 

  100. Xiong Y, Pulli K (2009) Mask-based image blending and its applications on mobile devices. In: SPIE multispectral image processing and pattern recognition (MIPPR), vol 7498. doi:10.1117/12.832379

    Google Scholar 

  101. Xiong Y, Pulli K (2010) Fast panorama stitching for high-quality panoramic images on mobile phones. IEEE Trans Consum Electron 56(2):298–306

    Article  Google Scholar 

  102. Xu Y, Zhou Q, Gong L, Zhu M, Ding X, Teng R (2014) High-speed simultaneous image distortion correction transformations for a multicamera cylindrical panorama real-time video system using FPGA. IEEE Trans Circuits Syst Video Technol 24(6):1061–1069. doi:10.1109/TCSVT.2013.2290576

    Article  Google Scholar 

  103. Yang JC, Everett M, Buehler C, McMillan L (2002) A real-time distributed light field camera. In: Proceedings of the 13th eurographics workshop on rendering, pp 77–86

    Google Scholar 

  104. Zabih R, Woodfill J (1994) Non-parametric local transforms for computing visual correspondence. In: Computer vision—ECCV’94. Springer, Berlin, pp 151–158

    Google Scholar 

  105. Zhang C, Chen T (2004) A self-reconfigurable camera array. In: Eurographics symposium on rendering, pp 243–254

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Popovic, V., Seyid, K., Cogal, Ö., Akin, A., Leblebici, Y. (2017). State-of-the-Art Multi-Camera Systems. In: Design and Implementation of Real-Time Multi-Sensor Vision Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-59057-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59057-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59056-1

  • Online ISBN: 978-3-319-59057-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics