Skip to main content

Abstract

The previous part of the book introduced five multi-camera systems, their design, and FPGA implementation for real-time omnidirectional video construction in both low and high resolutions. This chapter will present several developed applications of multi-camera systems. The first application is the HDR imaging implemented on a platform Panoptic Media Platform, described in Chap. 6, but it is easily portable to any other multi-camera system with large FOV overlap between the cameras. The other applications are based on depth estimation hardware and include hardware-based free-view synthesis, as well as multiple real-time software applications that use FPGA-generated depth map. The implemented applications conceptually prove that the high-quality and high-performance RGB+D outputs of the proposed real-time disparity estimation hardware can be used for enhanced 3D-based video processing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The software applications head–hands–shoulders tracking, virtual mouse using hand tracking, and face tracking integrated with free viewpoint synthesis are developed in EPFL, as a collaboration with Youngjoo Seo, a PhD candidate at KAIST, Korea.

References

  1. Afshari H, Popovic V, Tasci T, Schmid A, Leblebici Y (2012) A spherical multi-camera system with real-time omnidirectional video acquisition capability. IEEE Trans Consum Electron 58(4):1110–1118. doi:10.1109/TCE.2012.6414975

    Article  Google Scholar 

  2. Akil M, Grandpierre T, Perroton L (2012) Real-time dynamic tone-mapping operator on GPU. J Real-Time Image Process 7(3):165–172. doi:10.1007/s11554-011-0196-7

    Article  Google Scholar 

  3. Akyüz AO (2012) High dynamic range imaging pipeline on the GPU. J Real-Time Image Process 10:273–287. doi:10.1007/s11554-012-0270-9

    Article  Google Scholar 

  4. Baak A, Müller M, Bharaj G, Seidel HP, Theobalt C (2013) A data-driven approach for real-time full body pose reconstruction from a depth camera. In: Consumer depth cameras for computer vision. Springer, London, pp 71–98

    Chapter  Google Scholar 

  5. Bloch C (2013) The HDRI handbook 2.0: high dynamic range imaging for photographers and CG Artists. Rocky Nook, Santa Barbara

    Google Scholar 

  6. Bouguet JY (2004) Camera calibration toolbox for matlab. http://www.vision.caltech.edu/bouguetj/ [Online]

  7. Bradski G, Kaehler A (2008) Learning OpenCV: computer vision with the OpenCV library. O’Reilly Media, Incorporated, Sebastopol

    Google Scholar 

  8. Chander G, Markham BL, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113(5):893–903

    Article  Google Scholar 

  9. de Berg M, van Kreveld M, Overmars M, Schwarzkopf O (2000) Computational geometry: algorithms and applications, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  10. Debevec PE, Malik J (1997) Recovering high dynamic range radiance maps from photographs. In: ACM SIGGRAPH 97, New York, NY, pp 369–378

    Chapter  Google Scholar 

  11. Drago F, Myszkowski K, Annen T, Chiba N (2003) Adaptive logarithmic mapping for displaying high contrast scenes. Comput Graphics Forum 22(3):419–426. doi:10.1111/1467-8659.00689

    Article  Google Scholar 

  12. Durand F, Dorsey J (2002) Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans Graph 21(3):257–266. doi:10.1145/566654.566574

    Article  Google Scholar 

  13. Fattal R, Lischinski D, Werman M (2002) Gradient domain high dynamic range compression. ACM Trans Graph 21(3):249–256. doi:10.1145/566654.566573

    Article  Google Scholar 

  14. Granados M, Ajdin B, Wand M, Theobalt C, Seidel HP, Lensch HPA (2010) Optimal HDR reconstruction with linear digital cameras. In: Proceedings of 23rd IEEE conference on computer vision and pattern recognition (CVPR), pp 215–222

    Google Scholar 

  15. Gupta M, Iso D, Nayar S (2013) Fibonacci exposure bracketing for high dynamic range imaging. In: IEEE international conference on computer vision (ICCV)

    Google Scholar 

  16. Hartley RI, Zisserman A (2004) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  17. Hasinoff SW, Durand F, Freeman WT (2010) Noise-optimal capture for high dynamic range photography. In: Proceedings of 23rd IEEE conference on computer vision and pattern recognition (CVPR), pp 553–560

    Google Scholar 

  18. Hassan F, Carletta JE (2007) An FPGA-based architecture for a local tone-mapping operator. J Real-Time Image Process 2(4):293–308. doi:10.1007/s11554-007-0056-7

    Article  Google Scholar 

  19. Jocha J (2012) Skeltrack: a free software library for skeleton tracking. https://github.com/joaquimrocha/Skeltrack [Online]

  20. Jun B, Kim D (2012) Robust face detection using local gradient patterns and evidence accumulation. Pattern Recogn 45(9):3304–3316

    Article  Google Scholar 

  21. Jungmann JH, MacAleese L, Visser J, Vrakking MJJ, Heeren RMA (2011) High dynamic range bio-molecular ion microscopy with the timepix detector. Anal Chem 83(20):7888–7894

    Article  Google Scholar 

  22. Kalantari NK, Shechtman E, Barnes C, Darabi S, Goldman DB, Sen P (2013) Patch-based high dynamic range video. In: ACM transactions on graphics (TOG) (Proceedings of SIGGRAPH Asia 2013), vol 32(6), p 202

    Google Scholar 

  23. Kang SB, Uyttendaele M, Winder S, Szeliski R (2003) High dynamic range video. ACM Trans Graph 22(3):319–325. doi:10.1145/882262.882270

    Article  Google Scholar 

  24. Kronander J, Gustavson S, Bonnet G, Unger J (2013) Unified HDR reconstruction from raw CFA data. In: Proceedings of IEEE international conference on computational photography

    Book  Google Scholar 

  25. Lapray PJ, Heyrman B, Rosse M, Ginhac D (2012) HDR-ARtiSt: high dynamic range advanced real-time imaging system. In: IEEE international symposium on circuits and systems, pp 1428–1431. doi:10.1109/ISCAS.2012.6271513

    Google Scholar 

  26. Lapray PJ, Heyrman B, Ginhac D (2014) HDR-ARtiSt: an adaptive real-time smart camera for high dynamic range imaging. J Real-Time Image Process, 1–16. doi:10.1007/s11554-013-0393-7

    Google Scholar 

  27. Mann S, Picard RW (1995) On being ‘undigital’ with digital cameras: extending dynamic range by combining differently exposed pictures. In: Proceedings of IS&T, pp 442–448

    Google Scholar 

  28. Mantiuk R, Daly S, Kerofsky L (2008) Display adaptive tone mapping. ACM Trans Graph 27(3):68:1–68:10

    Google Scholar 

  29. Martinez-Sanchez A, Fernandez C, Navarro PJ, Iborra A (2011) A novel method to increase LinLog CMOS sensors’ performance in high dynamic range scenarios. Sensors 11(9):8412–8429. doi:10.3390/s110908412

    Article  Google Scholar 

  30. Mertens T, Kautz J, Van Reeth F (2007) Exposure fusion. In: Pacific conference on computer graphics and applications, pp 382–390. doi:10.1109/PG.2007.17

    Google Scholar 

  31. Meyer-Baese U (2007) Digital signal processing with field programmable gate arrays, 3rd edn. Springer, Berlin

    MATH  Google Scholar 

  32. Mitsunaga T, Nayar S (1999) Radiometric self calibration. In: IEEE conference on computer vision and pattern recognition (CVPR), vol 1, pp 374–380

    Google Scholar 

  33. Pattanaik SN, Tumblin J, Yee H, Greenberg DP (2000) Time-dependent visual adaptation for fast realistic image display. In: ACM SIGGRAPH 00, New York, NY, pp 47–54. doi:10.1145/344779.344810

    Chapter  Google Scholar 

  34. Pattanaik SN, Reinhard E, Ward G, Debevec PE (2005) High dynamic range imaging - acquisition, display, and image-based lighting. Morgan Kaufmann, Burlington

    Google Scholar 

  35. Popovic V, Pignat E, Leblebici Y (2014) Performance optimization and FPGA implementation of real-time tone mapping. IEEE Trans Circuits Syst II: Express Briefs 61(10):803–807. doi:10.1109/TCSII.2014.2345306

    Article  Google Scholar 

  36. Portz T, Zhang L, Jiang H (2013) Random coded sampling for high-speed HDR video. In: IEEE international conference on computational photography (ICCP). doi:10.1109/ICCPhot.2013.6528308

    Google Scholar 

  37. Ramachandra V, Zwicker M, Nguyen T (2008) HDR imaging from differently exposed multiview videos. In: IEEE 3DTV conference: the true vision-capture, transmission and display of 3D video, pp 85–88

    Google Scholar 

  38. Reinhard E, Stark M, Shirley P, Ferwerda J (2002) Photographic tone reproduction for digital images. ACM Trans Graph 21(3):267–276. doi:10.1145/566654.566575

    Article  Google Scholar 

  39. Robertson MA, Borman S, Stevenson RL (2003) Estimation-theoretic approach to dynamic range enhancement using multiple exposures. J Electron Imaging 12(2):219–228

    Article  Google Scholar 

  40. Saleem A, Beghdadi A, Boashash B (2012) Image fusion-based contrast enhancement. EURASIP J Image Video Process 2012(10):1–17. doi:10.1186/1687-5281-2012-10

    Google Scholar 

  41. Seyid K, Popovic V, Cogal O, Akin A, Afshari H, Schmid A, Leblebici Y (2015) A real-time multiaperture omnidirectional visual sensor based on an interconnected network of smart cameras. IEEE Trans Circuits Syst Video Technol 25(2):314–324. doi:10.1109/TCSVT.2014.2355713

    Article  Google Scholar 

  42. Slomp M, Oliveira MM (2008) Real-time photographic local tone reproduction using summed-area tables. In: Computer graphics international, Istanbul, pp 82–91

    Google Scholar 

  43. Tocci MD, Kiser C, Tocci N, Sen P (2011) A versatile HDR video production system. ACM Trans Graph 30(4):41:1–41:10. doi:10.1145/2010324.1964936

    Google Scholar 

  44. Vytla L, Hassan F, Carletta JE (2013) A real-time implementation of gradient domain high dynamic range compression using a local Poisson solver. J Real-Time Image Process 8(2):153–167. doi:10.1007/s11554-011-0198-5

    Article  Google Scholar 

  45. Wah Ng C, Ranganath S (2002) Real-time gesture recognition system and application. Image Vision Comput 20(13):993–1007

    Article  Google Scholar 

  46. Ward G (1991) Real pixels. In: Graphics gems II. Academic, San Diego, CA, pp 80–83

    Chapter  Google Scholar 

  47. Ward G, Rushmeier H, Piatko C (1997) A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Trans Vis Comput Graphics 3(4):291–306. doi:10.1109/2945.646233

    Article  Google Scholar 

  48. Yoshida A, Blanz V, Myszkowski K, Seidel HP (2005) Perceptual evaluation of tone mapping operators with real-world scenes. In: SPIE human vision & electronic imaging X, pp 192–203. doi:10.1117/12.587782

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Popovic, V., Seyid, K., Cogal, Ö., Akin, A., Leblebici, Y. (2017). Computational Imaging Applications. In: Design and Implementation of Real-Time Multi-Sensor Vision Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-59057-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59057-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59056-1

  • Online ISBN: 978-3-319-59057-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics