Skip to main content

Inconsistency of Template Estimation with the Fréchet Mean in Quotient Space

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10265))

Included in the following conference series:

  • 6449 Accesses

Abstract

We tackle the problem of template estimation when data have been randomly transformed under an isometric group action in the presence of noise. In order to estimate the template, one often minimizes the variance when the influence of the transformations have been removed (computation of the Fréchet mean in quotient space). The consistency bias is defined as the distance (possibly zero) between the orbit of the template and the orbit of one element which minimizes the variance. In this article we establish an asymptotic behavior of the consistency bias with respect to the noise level. This behavior is linear with respect to the noise level. As a result the inconsistency is unavoidable as soon as the noise is large enough. In practice, the template estimation with a finite sample is often done with an algorithm called max-max. We show the convergence of this algorithm to an empirical Karcher mean. Finally, our numerical experiments show that the bias observed in practice cannot be attributed to the small sample size or to a convergence problem but is indeed due to the previously studied inconsistency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that in this article, \(g\cdot x\) is the result of the action of g on x, and \(\cdot \) should not to be confused with the multiplication of real numbers noted \(\times \).

  2. 2.

    \(d_Q\) is called a pseudometric because \(d_Q([x],[y])\) can be equal to zero even if \([x]\ne [y]\). If the orbits are closed sets then \(d_Q\) is a distance.

  3. 3.

    The code used in this Section is available at http://loic.devilliers.free.fr/ipmi.html.

  4. 4.

    Indeed we know that \(x\in \mathbb {R}^+\mapsto x^2-2bx+c\) reaches its minimum at the point \(x=b^+\) and \(f(b^+)=c-(b^+)^2\).

  5. 5.

    Note that we remove the positive part and the square because \(\text {argmax}\, h=\text {argmax}\, (h^+)^2\) since h takes a non negative value (indeed \(h(v)\ge \mathbb {E}(\left\langle v,\phi \cdot t_0+\epsilon \right\rangle )=\left\langle v,\mathbb {E}(\phi \cdot t_0)\right\rangle \) and this last quantity is non negative for at least one \(v\in S\)).

References

  1. Allassonnière, S., Amit, Y., Trouvé, A.: Towards a coherent statistical framework for dense deformable template estimation. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 69(1), 3–29 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bhattacharya, R., Patrangenaru, V.: Large sample theory of intrinsic and extrinsic sample means on manifolds. Ann. Stat. 31, 1–29 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bigot, J., Charlier, B.: On the consistency of Fréchet means in deformable models for curve and image analysis. Electron. J. Stat. 5, 1054–1089 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheng, W., Dryden, I.L., Huang, X.: Bayesian registration of functions and curves. Bayesian Anal. 11(2), 447–475 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex fourier series. Math. Comput. 19(90), 297–301 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cootes, T.F., Marsland, S., Twining, C.J., Smith, K., Taylor, C.J.: Groupwise diffeomorphic non-rigid registration for automatic model building. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 316–327. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24673-2_26

    Chapter  Google Scholar 

  7. Devilliers, L., Allassonnière, S., Trouvé, A., Pennec, X.: Template estimation in computational anatomy: Fréchet means in top and quotient spaces are not consistent. ArXiv e-prints, August 2016

    Google Scholar 

  8. Guimond, A., Meunier, J., Thirion, J.P.: Average brain models: a convergence study. Comput. Vis. Image Underst. 77(2), 192–210 (2000)

    Article  Google Scholar 

  9. Hitziger, S., Clerc, M., Gramfort, A., Saillet, S., Bénar, C., Papadopoulo, T.: Jitter-adaptive dictionary learning-application to multi-trial neuroelectric signals. arXiv preprint arXiv:1301.3611 (2013)

  10. Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23, S151–S160 (2004)

    Article  Google Scholar 

  11. Kurtek, S., Klassen, E., Ding, Z., Avison, M.J., Srivastava, A.: Parameterization-invariant shape statistics and probabilistic classification of anatomical surfaces. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 147–158. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22092-0_13

    Chapter  Google Scholar 

  12. Kurtek, S.A., Srivastava, A., Wu, W.: Signal estimation under random time-warpings and nonlinear signal alignment. In: Advances in Neural Information Processing Systems, pp. 675–683 (2011)

    Google Scholar 

  13. Miolane, N., Holmes, S., Pennec, X.: Template shape estimation: correcting an asymptotic bias. arXiv preprint arXiv:1610.01502 (2016)

  14. Panaretos, V.M., Zemel, Y.: Amplitude and phase variation of point processes. Ann. Stat. 44(2), 771–812 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ziezold, H.: On expected figures and a strong law of large numbers for random elements in quasi-metric spaces. In: Kožešnik, J. (ed.) Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes and of the 1974 European Meeting of Statisticians, pp. 591–602. Springer, Dordrecht (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïc Devilliers .

Editor information

Editors and Affiliations

A Proof of Theorem 1

A Proof of Theorem 1

Proof

In the proof, we note by S the unit sphere in H. In order to prove that \(K>0\), we take x in the support of \(\epsilon \) such that x is not a fixed point under the action of G. It exists \(g_0\in G\) such that \(g_0\cdot x\ne x\). We note \(v_0=\frac{g_0\cdot x}{\Vert x\Vert }\in S\), we have \(\left\langle v_0,g_0\cdot x\right\rangle =\Vert x\Vert >\left\langle v_0,x\right\rangle \) and by continuity of the dot product it exists \(r>0\) such that: \( \forall y\in B(x,r)\quad \left\langle v_0,g_0\cdot y\right\rangle >\left\langle v_0,y\right\rangle \) as x is in the support of \(\epsilon \) we have \(\mathbb {P}(\epsilon \in B(x,r))>0\), it follows:

$$\begin{aligned} \mathbb {P}\left( \underset{g\in G}{\sup } \left\langle v_0,g\cdot \epsilon \right\rangle>\left\langle v_0,\epsilon \right\rangle \right) >0. \end{aligned}$$
(7)

Thanks to Inequality (7) and the fact that \(\sup _{g\in G} \left\langle v_0,g\cdot \epsilon \right\rangle \ge \left\langle v_0,\epsilon \right\rangle \) we have:

$$\begin{aligned} K=\underset{v\in S}{\sup }\, \mathbb {E}\left( \underset{g\in G}{\sup } \left\langle v,g \cdot \epsilon \right\rangle \right) \ge \mathbb {E}\left( \underset{g\in G}{\sup } \left\langle v_0,g \cdot \epsilon \right\rangle \right) >\mathbb {E}(\left\langle v_0,\epsilon \right\rangle )=\left\langle v_0,\mathbb {E}(\epsilon )\right\rangle =0. \end{aligned}$$

Using the Cauchy-Schwarz inequality: \(K\le \sup _{v\in S} \mathbb {E}(\Vert v\Vert \times \Vert \epsilon \Vert )\le \mathbb {E}(\Vert \epsilon \Vert ^2)^{\frac{1}{2}}=1\). We now prove Inequalities (3). The variance at \(\lambda v\) for \(v\in S\) and \(\lambda \ge 0\) is:

$$\begin{aligned} F(\lambda v)=\mathbb {E}\left( \underset{g\in G}{\inf } \Vert \lambda v-g \cdot Y\Vert ^2\right) =\lambda ^2-2\lambda \mathbb {E}\left( \underset{g\in G}{\sup } \left\langle v,g \cdot Y\right\rangle \right) +\mathbb {E}(\Vert Y\Vert ^2). \end{aligned}$$
(8)

Indeed \(\Vert g\cdot Y\Vert =\Vert Y\Vert \) thanks to the isometric action. We note \(x^+=\max (x,0)\) the positive part of x and \(h(v)=\mathbb {E}(\sup _{g\in G}\left\langle v,g \cdot Y\right\rangle )\). The \(\lambda \ge 0\) whichFootnote 4 minimizes (8) is \(h(v)^+ \) and the minimum value of the variance restricted to the half line \(\mathbb {R}^+v\) is \(F(h(v)^+ v)=\mathbb {E}(\Vert Y\Vert ^2)- (h(v)^+)^2\). To find \([m_\star ]\) the Fréchet mean of [Y], we need to maximize \((h(v)^+)^2\) with respect to \(v\in S\): \(m_\star =h(v_\star )v_\star \) withFootnote 5 \(v_\star \in \text {argmax}_{v\in S} \,h(v)\). As we said in the sketch of the proof we are interested in getting a piece of information about the norm of \(\Vert m_\star \Vert \) we have: \( \Vert m_\star \Vert =h(v_\star )=\sup _{v\in S} h. \) Let \(v\in S\), we have: \(-\Vert t_0\Vert \le \left\langle v,g\phi \cdot t_0\right\rangle \le \Vert t_0\Vert \) because the action is isometric. Now we decompose \(Y=\phi \cdot t_0+\sigma \epsilon \) and we get:

$$\begin{aligned} h(v)= & {} \mathbb {E}\left( \underset{g\in G}{\sup } \left\langle v,g\cdot Y\right\rangle \right) = \mathbb {E}\left( \underset{g\in G}{\sup } \left( \left\langle v,g\cdot \sigma \epsilon \right\rangle +\left\langle v,g\phi \cdot t_0 \right\rangle \right) \right) \\ h(v)\le & {} \mathbb {E}\left( \underset{g\in G}{\sup } \left( \left\langle v,g \cdot \sigma \epsilon \right\rangle +\Vert t_0\Vert \right) \right) = \sigma \mathbb {E}\left( \underset{g\in G}{\sup } \left\langle v,g \cdot \epsilon \right\rangle \right) +\Vert t_0\Vert \\ h(v)\ge & {} \mathbb {E}\left( \underset{g\in G}{\sup } \left( \left\langle v,g\cdot \sigma \epsilon \right\rangle \right) -\Vert t_0\Vert \right) = \sigma \mathbb {E}\left( \underset{g\in G}{\sup } \left\langle v,g \cdot \epsilon \right\rangle \right) -\Vert t_0\Vert . \end{aligned}$$

By taking the biggest value in these inequalities with respect to \(v\in S\), by definition of K we get:

$$\begin{aligned} -\Vert t_0\Vert +\sigma K \le \Vert m_\star \Vert \le \Vert t_0\Vert +\sigma K. \end{aligned}$$
(9)

Thanks to (9) and to (5), Inequalities (3) are proved.   \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Devilliers, L., Pennec, X., Allassonnière, S. (2017). Inconsistency of Template Estimation with the Fréchet Mean in Quotient Space. In: Niethammer, M., et al. Information Processing in Medical Imaging. IPMI 2017. Lecture Notes in Computer Science(), vol 10265. Springer, Cham. https://doi.org/10.1007/978-3-319-59050-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59050-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59049-3

  • Online ISBN: 978-3-319-59050-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics