Skip to main content

Non-conforming Finite Elements for Flexible Discretization with Applications to Aeroacoustics

  • Chapter
  • First Online:
Book cover Computational Acoustics

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 579))

  • 2219 Accesses

Abstract

The non-conforming Finite Element (FE) method allows the coupling of two or more sub-domains with quite different mesh sizes. Therewith, we gain the flexibility to choose for each sub-domain an optimal grid. The two proposed methods - Mortar and Nitsche-type mortaring - fulfill the physical conditions along the non-conforming interfaces. We exploit this capability and apply it to real engineering applications in aeroacoustics. The results clearly demonstrate the superiority of the non-conforming FE method over the standard FE method concerning pre-processing, mesh generation flexibility, accuracy and computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alipour, F., Brücker, C., Cook, D., Gömmel, A., Kaltenbacher, M., Willy, M., et al. (2011). Mathematical models and numerical schemes for the simulation of human phonation. Current Bioinformatics, 6(3), 323–343.

    Article  Google Scholar 

  • Becker, S., Hahn, C., Kaltenbacher, M., & Lerch, R. (2008). Flow-induced sound of wall-mounted cylinders with different geometries. AIAA Journal, 46(9), 2265–2281.

    Article  Google Scholar 

  • Bernardi, C., Maday, Y., & Patera, A. T. (1994). A new nonconforming approach to domain decomposition: The mortar element method. Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XI (Paris, 1989–1991) (Vol. 299, pp. 13–51). Pitman research notes in mathematics series. Harlow: Longman Scientific and Technical.

    Google Scholar 

  • Dokeva, N. (2006). Scalable mortar methods for elliptic problems on many subregions. Ph.D. thesis, University of Southern California.

    Google Scholar 

  • Döllinger, M., Kobler, J., Berry, A., Mehta, D., Luegmair, G., & Bohr, C. (2011). Experiments on analysing voice production: Excised (human, animal) and in vivo (animal) approaches. Current Bioinformatics, 6(3), 286–304.

    Article  Google Scholar 

  • Donea, J., Huerta, A., Ponthot, J. P., & Rodriguez-Ferran, A. (2004). Arbitrary Lagrangian-Eulerian methods. Encyclopedia of computational mechanics. New York: Wiley.

    Google Scholar 

  • Durst, F., & Schäfer, M. (1996). A parallel block-structured multigrid method for the prediction of incompressible flows. International Journal for Numerical Methods in Fluids, 22, 549–565.

    Article  MATH  Google Scholar 

  • Escobar, M. (2007). Simulation of flow induced noise. Ph.D. thesis, Department of Sensor Technology, University of Erlangen-Nuremberg.

    Google Scholar 

  • Ewert, R., & Schröder, W. (2003). Acoustic perturbation equations based on flow decomposition via source filtering. Journal of Computational Physics, 188, 365–398.

    Article  MathSciNet  MATH  Google Scholar 

  • Farrell, P. E., & Maddison, J. R. (2011). Conservative interpolation between volume meshes by local Galerkin projection. Computer Methods in Applied Mechanics and Engineering, 200, 89–100.

    Article  MathSciNet  MATH  Google Scholar 

  • Flemisch, B., Kaltenbacher, M., Triebenbacher, S., & Wohlmuth, B. (2012). Non-matching grids for a flexible discretization in computational acoustics. Communications in Computational Physics, 11(2), 472–488.

    Article  MathSciNet  Google Scholar 

  • Fritz, A., Hüeber, S., & Wohlmuth, B. (2004). A comparison of mortar and Nitsche techniques for linear elasticity. In CALCOLO.

    Google Scholar 

  • Gander, M. J., & Japhet, C. (2009). An algorithm for non-matching grid projections with linear complexity. Domain decomposition methods in science and engineering XVIII. Berlin: Springer.

    Google Scholar 

  • Grabinger, J. (2007). Mechanical-acoustic coupling on non-matching finite element grids. Master’s thesis, University Erlangen-Nuremberg.

    Google Scholar 

  • Greiner, G., & Hormann, K. (1998). Efficient clipping of arbitrary polygons. ACM Transactions on Graphics, 17, 71–83.

    Article  Google Scholar 

  • Hahn, C. (2008). Experimentelle Analyse und Reduktion aeroakustischer Schallquellen an einfachen Modellstrukturen. Ph.D. thesis, University of Erlangen-Nuremberg.

    Google Scholar 

  • Hansbo, A., Hansbo, P., & Larson, M. G. (2003). A finite element method on composite grids based on Nitsche’s method. ESAIM: Mathematical Modelling and Numerical Analysis, 37(3), 495–514.

    Article  MathSciNet  MATH  Google Scholar 

  • Hardin, J. C., & Pope, D. S. (1994). An acoustic/viscous splitting technique for computational aeroacoustics. Theoretical and Computational Fluid Dynamics, 6, 323–340.

    Article  MATH  Google Scholar 

  • Heinstein, M. W., & Laursen, T. A. (2003). Consistent mesh tying methods for topologically distinct discretized surfaces in non-linear solid mechanics. International Journal for Numerical Methods in Engineering, 57, 1197–1242.

    Article  MathSciNet  MATH  Google Scholar 

  • Hughes, T. J. R. (2000). The finite element method. New York: Dover.

    MATH  Google Scholar 

  • Hüppe, A. (2013). Spectral finite elements for acoustic field computation. Ph.D. thesis, University of Klagenfurt, Austria.

    Google Scholar 

  • Issa, R. I. (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40–65.

    Article  MathSciNet  MATH  Google Scholar 

  • Kaltenbacher, B., Kaltenbacher, M., & Sim, I. (2013). A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics. Journal of Computational Physics, 235, 407–422.

    Article  MathSciNet  MATH  Google Scholar 

  • Kaltenbacher, M. (2015). Numerical simulation of mechatronic sensors and actuators - finite elements for computational multiphysics (3rd ed.). Berlin: Springer.

    Google Scholar 

  • Kaltenbacher, M., Escobar, M., Ali, I., & Becker, S. (2010). Numerical simulation of flow-induced noise using LES/SAS and Lighthill’s acoustics analogy. International Journal for Numerical Methods in Fluids, 63(9), 1103–1122.

    MathSciNet  MATH  Google Scholar 

  • Kaltenbacher, M., Hüppe, A., Grabinger, J., & Wohlmuth, B. (2016a). Modeling and finite element formulation for acoustic problems including rotating domains. AIAA Journal, 54, 3768–3777.

    Google Scholar 

  • Kaltenbacher, M., Hüppe, A., Reppenhagen, A., Tautz, M., Becker, S., & Kühnel, W. (2016b). Computational aeroacoustics for HVAC systems utilizing a hybrid approach. SAE International, 9.

    Google Scholar 

  • Kelleher, J. E., Siegmund, T., Du, M., Naseri, E., & Chan, R. W. (2013). Empirical measurements of biomechanical anisotropy of the human vocal fold lamina propria. Biomechanics and Modeling in Mechanobiology, 12(3), 555–567.

    Article  Google Scholar 

  • Klöppel, T., Popp, A., Küttler, U., & Wall, W. (2011). Fluid - structure interaction for non-conforming interfaces based on a dual morta formulation. Computer Methods in Applied Mechanics and Engineering, 200(45), 3111–3126.

    Article  MathSciNet  MATH  Google Scholar 

  • Köck, H., Eisner, S., & Kaltenbacher, M. (2015). Electrothermal multiscale modeling and simulation concepts for power electronics. IEEE Transactions on Power Electronics, 99.

    Google Scholar 

  • Langer, U., & Steinbach, P. (2003). Boundary element tearing and interconnecting methods. Computing, 71(3), 205–228.

    Article  MathSciNet  MATH  Google Scholar 

  • Link, G., Kaltenbacher, M., Breuer, M., & Dllinger, M. (2009). A 2d finite-element scheme for fluidsolidacoustic interactions and its application to human phonation. Computer Methods in Applied Mechanics and Engineering, 198, 3321–3334.

    Article  MathSciNet  MATH  Google Scholar 

  • Menter, F., & Egorov, Y. (2005). A scale adaptive simulation model using two-equation models. In 43rd AIAA Aerospace Sciences Meeting and Exhibit, number AIAA-2005-1095.

    Google Scholar 

  • Munz, C. D., Dumbser, M., & Roller, S. (2007). Linearized acoustic perturbation equations for low Mach number flow with variable density and temperature. Journal of Computational Physics, 224, 352–364.

    Article  MathSciNet  MATH  Google Scholar 

  • Park, K. C., & Felippa, C. A. (2002). A simple algorithm for localized construction of non-matching structural interfaces. International Journal for Numerical Methods in Engineering, 53, 2117–2142.

    Article  MATH  Google Scholar 

  • Puso, M. A. (2004). A 3d mortar method for solid mechanics. International Journal for Numerical Methods in Engineering, 59, 315–336.

    Article  MATH  Google Scholar 

  • Puso, M. A., & Laursen, T. A. (2002). A 3d contact smoothing method using Gregory patches. International Journal for Numerical Methods in Engineering, 54, 1161–1194.

    Article  MathSciNet  MATH  Google Scholar 

  • Schwarze, R., Mattheus, W., Klostermann, J., & Brücker, C. (2011). Starting jet flows in a three-dimensional channel with larynx-shaped constriction. Computers and Fluids, 48(1), 68–83.

    Article  MATH  Google Scholar 

  • Seo, J. H., & Mittal, R. (2011). A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries. Journal of Computational Physics, 230(4), 1000–1019.

    Article  MathSciNet  MATH  Google Scholar 

  • Seo, J. H., & Moon, Y. J. (2005). Perturbed compressible equations for aeroacoustic noise prediction at low Mach numbers. AIAA Journal, 43, 1716–1724.

    Article  Google Scholar 

  • Shen, W. Z., & Sørensen, J. N. (1999). Aeroacoustic modelling of low-speed flows. Theoretical and Computational Fluid Dynamics, 13, 271–289.

    Article  MATH  Google Scholar 

  • Šidlof, P., Zörner, S., & Hüppe, A. (2014). A hybrid approach to the computational aeroacoustics of human voice production. Biomechanics and Modeling in Mechanobiology, 1–16.

    Google Scholar 

  • Spalart, P. R., & Allmaras, S. R. (1994). A one-equation turbulence model for aerodynamic flows. Recherche Aerospatiale, 1, 5–21.

    Google Scholar 

  • Story, B. H., Titze, I. R., & Hoffman, E. A. (1996). Vocal tract area functions from magnetic resonance imaging. The Journal of the Acoustical Society of America, 100(1), 537–554.

    Article  Google Scholar 

  • Svec, J., & Schutte, H. K. (2012). Kymographic imaging of laryngeal vibrations. Current Opinion in Otolaryngology and Head and Neck Surgery, 20(6), 458–465.

    Article  Google Scholar 

  • Triep, M., & Brücker, C. (2010). Three-dimensional nature of the glottal jet. The Journal of the Acoustical Society of America, 127(3), 1537–1547.

    Article  Google Scholar 

  • Wohlmuth, B. I. (2000). A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM Journal on Numerical Analysis, 38(3), 989–1012.

    Article  MathSciNet  MATH  Google Scholar 

  • Zörner, S., Kaltenbacher, M., Lerch, R., Sutor, A., & Döllinger, M. (2010). Measurement of the elasticity modulus of soft tissues. Journal of Biomechanics, 43(8), 1540–1545.

    Article  Google Scholar 

  • Zörner, S., Kaltenbacher, M., & Döllinger, M. (2013). Investigation of prescribed movement in fluid-structure interaction simulation for the human phonation process. Computers and Fluids, 86, 133–140.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to acknowledge his former Ph.D. students Andreas Hüppe, Simon Triebenbacher and Stefan Zörner for main contributions towards non-conforming grid techniques and its applications. Furthermore, I wish to tanks my colleague Barbara Wohlmuth (Technische Universität München, Germany) for our longtime cooperation on non-conforming grid techniques. Finally, many thanks to Stefan Schoder for proof reading and his usefull suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Kaltenbacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Kaltenbacher, M. (2018). Non-conforming Finite Elements for Flexible Discretization with Applications to Aeroacoustics. In: Kaltenbacher, M. (eds) Computational Acoustics. CISM International Centre for Mechanical Sciences, vol 579. Springer, Cham. https://doi.org/10.1007/978-3-319-59038-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59038-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59037-0

  • Online ISBN: 978-3-319-59038-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics