Skip to main content

Nutrient Fluxes and Ecological Functions of Coral Reef Sponges in a Changing Ocean

  • Chapter
  • First Online:
Climate Change, Ocean Acidification and Sponges

Abstract

Coral reefs are iconic examples of biological hotspots, highly appreciated because of their ecosystem services. Yet, they are threatened by human impact and climate change, highlighting the need to develop tools and strategies to curtail changes in these ecosystems. Remarkably, ever since Darwin’s descriptions of coral reefs, it has been a mystery how one of Earth’s most productive and diverse ecosystems thrives in oligotrophic seas, as an oasis in a marine desert. Sponges are now increasingly recognized as key ecosystem engineers, efficiently retaining and transferring energy and nutrients on the reef. As a result, current reef food web models, lacking sponge-driven resource cycling, are incomplete and need to be redeveloped. However, mechanisms that determine the capacity of sponge “engines,” how they are fueled, and drive communities are unknown. Here we will discuss how sponges integrate within the novel reef food web framework. To this end, sponges will be evaluated on functional traits (morphology, associated microbes, pumping rate) in the processing of dissolved and particulate food. At the community level, we discuss to what extent these different traits are a driving force in structuring shallow- to deep-sea reef ecosystems, from fuel input (primary producers) to engine output (driving and modulating the consumer food web). Finally, as climate change causes the onset of alterations in the community structure and food web of reef ecosystems, there is evidence accumulating that certain biological pathways are triggered, such as the sponge loop and the microbial loop, that may shift reef ecosystems faster than their original stressors (e.g., warming oceans and ocean acidification). Unfortunately, these biological pathways receive much less attention at present, which seriously hampers our ability to predict future changes within reef ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelson A, Miloh T, Loya Y (1993) Flow patterns induced by substrata and body morphologies of benthic organisms, and their roles in determining availability of food particles. Limnol Oceanogr 38:1116–1124

    Article  Google Scholar 

  • Alexander BE (2015) Cell turnover in marine sponges: insight into poriferan physiology and nutrient cycling in benthic ecosystems. PhD dissertation, University of Amsterdam

    Google Scholar 

  • Alexander BE, Liebrand K, Osinga R et al (2014) Cell turnover and detritus production in marine sponges from tropical and temperate benthic ecosystems. PLoS One 9:e109486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alexander BE, Mueller B, Vermeij MJ et al (2015a) Biofouling of inlet pipes affects water quality in running seawater aquaria and compromises sponge cell proliferation. PeerJ 3:e1430

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexander BE, Achlatis M, Osinga R et al (2015b) Cell kinetics during regeneration in the sponge Halisarca caerulea: how local is the response to tissue damage? PeerJ 3:e820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amon RMW, Benner R (1996) Bacterial utilization of different size classes of dissolved organic matter. Limnol Oceanogr 41:41–51

    Article  CAS  Google Scholar 

  • Anderson T, Williams PB (1998) Modelling the seasonal cycle of dissolved organic carbon at station E 1 in the english channel. Estuar Coast Shelf Sci 46:93–109

    Article  CAS  Google Scholar 

  • Atkinson MJ, Falter JL (2003) Coral reefs. In: Black KD, Shimmield GB (eds) Biogeochemistry of marine systems. Blackwell Publishing, Oxford, pp 40–64

    Google Scholar 

  • Ayling AL (1983) Growth and regeneration rates in thinly encrusting demospongiae from temperate waters. Biol Bull 165:343–352

    Article  PubMed  Google Scholar 

  • Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791

    Article  CAS  PubMed  Google Scholar 

  • Azam F, Fenchel T, Field JG et al (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Bell JJ, Smith D (2004) Ecology of sponge assemblages (porifera) in the Wakatobi region, South-East Sulawesi, Indonesia: richness and abundance. J Mar Biol Assoc UK 84:581–591

    Article  Google Scholar 

  • Bell JJ, Davy SK, Jones T et al (2013) Could some coral reefs become sponge reefs as our climate changes? Glob Chang Biol 19:2613–2624

    Article  PubMed  Google Scholar 

  • Benayahu Y, Loya Y (1981) Competition for space among coral-reef sessile organisms at Eilat, Red Sea. Bull Mar Sci 31:514–522

    Google Scholar 

  • Bender MA, Knutson TR, Tuleya RE et al (2010) Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 327:454–458

    Article  CAS  PubMed  Google Scholar 

  • Benner R (2002) Chemical composition and reactivity. In: Hansell DA, Carlson CA (eds) Biochemistry of marine dissolved organic matter. Academic Press, San Diego, pp 59–90

    Chapter  Google Scholar 

  • Brocke HJ, Wenzhoefer F, De Beer D et al (2015) High dissolved organic carbon release by benthic cyanobacterial mats in a Caribbean reef ecosystem. Nat Sci Rep 5:8852

    Article  CAS  Google Scholar 

  • Brylinsky M (1977) Release of dissolved organic matter by some marine macrophytes. Mar Biol 39:213–220

    Article  Google Scholar 

  • Burke L, Maidens J (2006) Reefs at risk in the Caribbean. World Resources Institute, Washington

    Google Scholar 

  • Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425:365–365

    Article  CAS  PubMed  Google Scholar 

  • Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res: Oceans 110:C09S04

    Article  CAS  Google Scholar 

  • Carlson CA (2002) Production and removal processes. In: Hansell DA, Carlson CA (eds) Biochemistry of marine dissolved organic matter. Academic Press, San Diego, pp 91–152

    Chapter  Google Scholar 

  • Carlson CA, Ducklow HW, Michaels AF (1994) Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea. Nature 371:405–408

    Article  CAS  Google Scholar 

  • Charpy L, Casareto B, Langlade M et al (2012) Cyanobacteria in coral reef ecosystems: a review. J Mar Biol 2012:259571

    Article  Google Scholar 

  • Cherrier J, Valentine S, Hamill B et al (2015) Light-mediated release of dissolved organic carbon by phytoplankton. J Mar Syst 147:45–51

    Article  Google Scholar 

  • Cheshire AC, Wilkinson CR, Seddon S et al (1997) Bathymetric and seasonal changes in photosynthesis and respiration of the phototrophic sponge Phyllospongia lamellosa in comparison with respiration by the heterotrophic sponge Ianthella basta on davies reef, great barrier reef. Mar Freshw Res 48:589–599

    Article  Google Scholar 

  • Chou LM, Huang DW, Tun KPP et al (2010) Temporal changes in reef community structure at Bintan Island (Indonesia) suggest need for integrated management. Pac Sci 64:99–111

    Article  Google Scholar 

  • Colvard NB, Edmunds PJ (2011) Decadal-scale changes in abundance of non-scleractinian invertebrates on a Caribbean coral reef. J Exp Mar Biol Ecol 397:153–160

    Article  Google Scholar 

  • Cooper GM, Hausman RE (2016) The cell: a molecular approach, Seventh edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Corredor JE, Wilkinson CR, Vicente VP et al (1988) Nitrate release by Caribbean reef sponges. Limnol Oceanogr 33:114–120

    Article  CAS  Google Scholar 

  • Cramer KL, Jackson JB, Angioletti CV et al (2012) Anthropogenic mortality on coral reefs in Caribbean panama predates coral disease and bleaching. Ecol Lett 15:561–567

    Article  PubMed  Google Scholar 

  • Crook ED, Cohen AL, Rebolledo-Vieyra M et al (2013) Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification. Proc Natl Acad Sci 110:11044–11049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crossland C (1987) In situ release of mucus and doc-lipid from the corals Acropora variabilis and Stylophora pistillata in different light regimes. Coral Reefs 6:35–42

    Article  CAS  Google Scholar 

  • Cucci T, Shumway S, Newell R et al (1985) Flow cytometry: a new method for characterization of differential ingestion, digestion and egestion by suspension feeders. Mar Ecol Prog Ser 24:201–204

    Article  Google Scholar 

  • Cyronak T, Schulz KG, Santos IR et al (2014) Enhanced acidification of global coral reefs driven by regional biogeochemical feedbacks. Geophys Res Lett 41:5538–5546

    Article  CAS  Google Scholar 

  • Darwin CR (1842) The structure and distribution of coral reefs. Being the first part of the geology of the voyage of the beagle, under the command of capt. Fitzroy, R.N. during the years 1832 to 1836. Smith, Elder and CO., London

    Google Scholar 

  • De Almeida J, Sauaia H, Viana J (2010) 5-bromo-2′-deoxyuridine induces visible morphological alteration in the DNA puffs of the anterior salivary gland region of bradysia hygida (diptera, sciaridae). Braz J Med Biol Res 43:1143–1152

    Article  CAS  PubMed  Google Scholar 

  • De Goeij JM (2009) Element cycling on tropical coral reefs: the cryptic carbon shunt revealed. PhD dissertation, University of Amsterdam

    Google Scholar 

  • De Goeij JM, van Duyl FC (2007) Coral cavities are sinks of dissolved organic carbon (DOC). Limnol Oceanogr 52:2608–2617

    Article  Google Scholar 

  • De Goeij JM, van den Berg H, van Oostveen MM et al (2008a) Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar Ecol Prog Ser 357:139–151

    Article  CAS  Google Scholar 

  • De Goeij JM, Moodley L, Houtekamer M et al (2008b) Tracing C-13-enriched dissolved and particulate organic carbon in the bacteria-containing coral reef sponge Halisarca caerulea: evidence for DOM feeding. Limnol Oceanogr 53:1376–1386

    Article  Google Scholar 

  • De Goeij JM, De Kluijver A, Van Duyl FC et al (2009) Cell kinetics of the marine sponge Halisarca caerulea reveal rapid cell turnover and shedding. J Exp Biol 212:3892–3900

    Article  PubMed  Google Scholar 

  • De Goeij JM, van Oevelen D, MJA V et al (2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–110

    Article  PubMed  CAS  Google Scholar 

  • Diaz MC, Rützler K (2001) Sponges: an essential component of Caribbean coral reefs. Bull Mar Sci 69:535–546

    Google Scholar 

  • Diaz MC, Ward BB (1997) Sponge-mediated nitrification in tropical benthic communities. Mar Ecol Prog Ser 156:97–107

    Article  CAS  Google Scholar 

  • Donner SD, Skirving WJ, Little CM et al (2005) Global assessment of coral bleaching and required rates of adaptation under climate change. Glob Chang Biol 11:2251–2265

    Article  Google Scholar 

  • Dunlap M, Pawlik JR (1996) Video-monitored predation by Caribbean reef fishes on an array of mangrove and reef sponges. Mar Biol 126:117–123

    Article  Google Scholar 

  • Duque A, Rakic P (2011) Different effects of bromodeoxyuridine and [3H]thymidine incorporation into DNA on cell proliferation, position, and fate. J Neurosci 31:15205–15217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efremova SM, Efremov VI (1979) Prolifération cellulaire chez la larve nageante de l’éponge d’eau douce: Baikalospongia bacillifera (dybowski). In: Lévi C, Boury-Esnault N (eds) Biologie des spongaires. Editions du C.N.R.S., Paris, pp 59–66

    Google Scholar 

  • Erwin PM, Thacker RW (2007) Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge assemblages. J Mar Biol Assoc UK 87:1683–1692

    Article  CAS  Google Scholar 

  • Erwin PM, Thacker RW (2008) Phototrophic nutrition and symbiont diversity of two Caribbean sponge–cyanobacteria symbioses. Mar Ecol Prog Ser 362:139–147

    Article  CAS  Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S et al (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1:165–169

    Article  CAS  Google Scholar 

  • Falkowski PG, Jokiel PL, Kinzie RA III (1990) Irradiance and corals. In: Dubinsky Z (ed) Coral reefs. Elsevier, Amsterdam, pp 89–107

    Google Scholar 

  • Feely RA, Sabine CL, Hernandez-Ayon JM et al (2008) Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1490–1492

    Article  CAS  PubMed  Google Scholar 

  • Ferrier-Pages C, Gattuso J, Cauwet G et al (1998) Release of dissolved organic carbon and nitrogen by the zooxanthellate coral Galaxea fascicularis. Mar Ecol Prog Ser 172:265–274

    Article  CAS  Google Scholar 

  • Ferrier-Pages C, Leclercq N, Jaubert J et al (2000) Enhancement of pico- and nanoplankton growth by coral exudates. Aquat Microb Ecol 21:203–209

    Article  Google Scholar 

  • Field CB, Barros VR, Dokken D et al (2014) IPCC, 2014: Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectorial aspects. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change

    Google Scholar 

  • Fiore CL, Baker DM, Lesser MP (2013) Nitrogen biogeochemistry in the caribbean sponge Xestospongia muta: a source or sink of dissolved inorganic nitrogen? PLoS One 8:e72961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiore CL, Labrie M, Jarett JK et al (2015) Transcriptional activity of the giant barrel sponge, Xestospongia muta holobiont: molecular evidence for metabolic interchange. Front Microbiol 6:364

    Article  PubMed  PubMed Central  Google Scholar 

  • Freeman CJ, Easson CG (2016) Sponge distribution and the presence of photosymbionts in Moorea, French Polynesia. PeerJ 4:e1816

    Article  PubMed  PubMed Central  Google Scholar 

  • Freeman CJ, Thacker RW (2011) Complex interactions between marine sponges and their symbiotic microbial communities. Limnol Oceanogr 56:1577–1586

    Article  Google Scholar 

  • Gardner TA, Cote IM, Gill JA et al (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960

    Article  CAS  PubMed  Google Scholar 

  • Garren M (2016) Microbial ecology: algae feed a shift on coral reefs. Nat Microbiol 1:16061

    Article  CAS  PubMed  Google Scholar 

  • Garrett P, Smith DL, Wilson AO et al (1971) Physiography, ecology, and sediments of two Bermuda patch reefs. J Geol 79:647–668

    Article  Google Scholar 

  • Ginsburg RN (1983) Geological and biological roles of cavities in coral reefs. In: Barnes D (ed) Perspectives on coral reefs. Brain Cloustan, Manuka, pp 148–153

    Google Scholar 

  • Gloeckner V, Wehrl M, Moitinho-Silva L et al (2014) The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol Bull 227:78–88

    Article  PubMed  Google Scholar 

  • Gochfeld D, Easson C, Freeman C et al (2012) Disease and nutrient enrichment as potential stressors on the caribbean sponge Aplysina cauliformis and its bacterial symbionts. Mar Ecol Prog Ser 456:101–111

    Article  CAS  Google Scholar 

  • Graham RG, Chen H, Dziallas C et al (2014) A more inclusive loop: examining the contribution of five bacterial specialists to nutrient cycling and the microbial loop. In: Eco-DAS X symposium proceedings

    Google Scholar 

  • Haas AF, Naumann MS, Struck U et al (2010) Organic matter release by coral reef associated benthic algae in the Northern Red Sea. J Exp Mar Biol Ecol 389:53–60

    Article  CAS  Google Scholar 

  • Haas AF, Nelson CE, Kelly LW et al (2011) Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PLoS One 6:e27973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas AF, Nelson CE, Rohwer F et al (2013) Influence of coral and algal exudates on microbially mediated reef metabolism. PeerJ 1:e108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haas AF, Fairoz MF, Kelly LW et al (2016) Global microbialization of coral reefs. Nat Microbiol 1:16042

    Article  CAS  PubMed  Google Scholar 

  • Hadas E, Marie D, Shpigel M et al (2006) Virus predation by sponges is a new nutrient-flow pathway in coral reef food webs. Limnol Oceanogr 51:1548–1550

    Article  Google Scholar 

  • Hadas E, Shpigel M, Ilan M (2009) Particulate organic matter as a food source for a coral reef sponge. J Exp Biol 212:3643–3650

    Article  CAS  PubMed  Google Scholar 

  • Hatcher BG (1988) Coral reef primary productivity: a beggar’s banquet. Trends Ecol Evol 3:106–111

    Article  CAS  PubMed  Google Scholar 

  • Hatcher BG (1990) Coral reef primary production: a hierarchy of patterns and process. Trends Ecol Evol 5:149–155

    Article  CAS  PubMed  Google Scholar 

  • Hentschel U, Hopke J, Horn M et al (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hentschel U, Fieseler L, Wehrl M et al (2003) Microbial diversity of marine sponges. In: WEG M (ed) Sponges (Porifera). Springer, Berlin, pp 59–88

    Chapter  Google Scholar 

  • Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177

    Article  CAS  PubMed  Google Scholar 

  • Hentschel U, Piel J, Degnan SM et al (2012) Genomic insights into the marine sponge microbiome. Nat Rev Microbiol 10:641–675

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann F, Radax R, Woebken D et al (2009) Complex nitrogen cycling in the sponge Geodia barretti. Environ Microbiol 11:2228–2243

    Article  CAS  PubMed  Google Scholar 

  • Hofmann GE, Smith JE, Johnson KS et al (2011) High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6:e28983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooper JNA, Levi C (1994) Biogeography of Indo-west Pacific sponges: Microcionidae, Raspailiidae, Axinellidae. In: Van Soest RWM, Van Kempen TMG, Braekman JC (eds) Sponges in space and time. Balkema, Rotterdam, pp 191–212

    Google Scholar 

  • Hooper JN, Van Soest RW (2002) In: Hooper JN, Van Soest RW, Willenz P (eds) Systema Porifera: a guide to the classification of sponges. Springer, New York

    Google Scholar 

  • Hoppe WF (1988) Growth, regeneration and predation in three species of large coral reef sponges. Mar Ecol Prog Ser 50:117–125

    Article  Google Scholar 

  • Houlbreque F, Delesalle B, Blanchot J et al (2006) Picoplankton removal by the coral reef community of La Prévoyante, Mayotte island. Aquat Microb Ecol 44:59–70

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR et al (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Rodrigues MJ, Bellwood DR et al (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365

    Article  CAS  PubMed  Google Scholar 

  • Hutchings PA (1974) A preliminary report on the density and distribution on invertebrates living in coral reefs. In: Cameron AM, Cambell BM, Cribb AB et al (eds) Proc 2nd Int Coral Reef Symp, Brisbane

    Google Scholar 

  • Imsiecke G, Münkner J, Lorenz B et al (1996) Inorganic polyphosphates in the developing freshwater sponge Ephydatia muelleri: effect of stress by polluted waters. Environ Toxicol Chem 15:1329–1334

    Article  CAS  Google Scholar 

  • Jackson JBC, Winston JE (1982) Ecology of cryptic coral reef communities. I. Distribution and abundance of major groups of encrusting organisms. J Exp Mar Biol Ecol 57:135–147

    Article  Google Scholar 

  • Jackson JBC, Goreau TF, Hartman WD (1971) Recent brachiopod-coralline sponge communities and their paleoecological significance. Science 173:623–625

    Article  CAS  PubMed  Google Scholar 

  • Jackson JBC, Kirby MX et al (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637

    Article  CAS  PubMed  Google Scholar 

  • Jiménez E, Ribes M (2007) Sponges as a source of dissolved inorganic nitrogen: nitrification mediated by temperate sponges. Limnol Oceanogr 52:948–958

    Article  Google Scholar 

  • Kahn AS, Leys SP (2016) The role of cell replacement in benthic–pelagic coupling by suspension feeders. R Soc Open Sci 3:160484

    Article  PubMed  PubMed Central  Google Scholar 

  • Kahn AS, Yahel G, Chu JW et al (2015) Benthic grazing and carbon sequestration by deep-water glass sponge reefs. Limnol Oceanogr 60:78–88

    Article  CAS  Google Scholar 

  • Keesing JK, Strzelecki J, Fromont J et al (2013) Sponges as important sources of nitrate on an oligotrophic continental shelf. Limnol Oceanogr 58:1947–1958

    Article  CAS  Google Scholar 

  • Kleypas JA, Buddemeier RW et al (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120

    Article  CAS  PubMed  Google Scholar 

  • Knowlton N (2001) The future of coral reefs. Proc Natl Acad Sci 98:5419–5425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knutson TR, McBride JL, Chan J et al (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163

    Article  CAS  Google Scholar 

  • Kuhns WJ, Ho M, Burger MM et al (1997) Apoptosis and tissue regression in the marine sponge Microciona prolifera. Biol Bull 193:239

    Article  CAS  PubMed  Google Scholar 

  • Lapointe BE (1997) Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida. Limnol Oceanogr 42:1119–1131

    Article  CAS  Google Scholar 

  • Larned S (1998) Nitrogen-versus phosphorus-limited growth and sources of nutrients for coral reef macroalgae. Mar Biol 132:409–421

    Article  Google Scholar 

  • León YM, Bjorndal KA (2002) Selective feeding in the hawksbill turtle, an important predator in coral reef ecosystems. Mar Ecol Prog Ser 245:249–258

    Article  Google Scholar 

  • Lesser MP (2000) Depth-dependent photoacclimatization to solar ultraviolet radiation in the Caribbean coral Montastraea faveolata. Mar Ecol Prog Ser 192:137–151

    Article  Google Scholar 

  • Lesser MP (2004) Experimental biology of coral reef ecosystems. J Exp Mar Biol Ecol 300:217–252

    Article  Google Scholar 

  • Lesser MP (2006) Benthic–pelagic coupling on coral reefs: feeding and growth of Caribbean sponges. J Exp Mar Biol Ecol 328:277–288

    Article  Google Scholar 

  • Lesser M (2013) Using energetic budgets to assess the effects of environmental stress on corals: are we measuring the right things? Coral Reefs 32:25–33

    Article  Google Scholar 

  • Lesser MP, Slattery M (2011) Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol Invasions 13:1855–1868

    Article  Google Scholar 

  • Lesser MP, Slattery M (2013) Ecology of Caribbean sponges: are top-down or bottom-up processes more important? PLoS One 8:e79799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesser MP, Shumway SE, Cucci T et al (1992) Impact of fouling organisms on mussel rope culture: Interspecific competition for food among suspension-feeding invertebrates. J Exp Mar Biol Ecol 165:91–102

    Article  Google Scholar 

  • Lesser MP, Slattery M, Stat M et al (2010) Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91:990–1003

    Article  PubMed  Google Scholar 

  • Locker S, Armstrong R, Battista T et al (2010) Geomorphology of mesophotic coral ecosystems: Current perspectives on morphology, distribution, and mapping strategies. Coral Reefs 29:329–345

    Article  Google Scholar 

  • Loh TL, Pawlik JR (2014) Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. Proc Natl Acad Sci 111:4151–4156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loh T, McMurray SE, Henkel TP et al (2015) Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals. PeerJ 3:e901

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Legentil S, Pawlik JR (2009) Genetic structure of the Caribbean giant barrel sponge Xestospongia muta using the I3-M11 partition of COI. Coral Reefs 28:157–165

    Article  Google Scholar 

  • López-Legentil S, Song B, McMurray SE et al (2008) Bleaching and stress in coral reef ecosystems: hsp70 expression by the giant barrel sponge Xestospongia muta. Mol Ecol 17:1840–1849

    Article  PubMed  CAS  Google Scholar 

  • Maldonado M (2015) Sponge waste that fuels marine oligotrophic food webs: a re-assessment of its origin and nature. Mar Ecol 37:477–491

    Article  Google Scholar 

  • Maldonado M, Zhang X, Cao X, Xue L et al (2010) Selective feeding by sponges on pathogenic microbes: a reassessment of potential for abatement of microbial pollution. Mar Ecol Prog Ser 403:75–89

    Article  Google Scholar 

  • Maldonado M, Ribes M, van Duyl FC (2012) Chapter three—nutrient fluxes through sponges: biology, budgets, and ecological implications. Adv Mar Biol 62:113–182

    Article  PubMed  Google Scholar 

  • Marie D, Partensky F, Jacquet S et al (1997) Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR green I. Appl Environ Microbiol 63:186–193

    CAS  PubMed  PubMed Central  Google Scholar 

  • McClanahan TR, Muthiga NA, Maina J et al (2009) Changes in northern Tanzania coral reefs during a period of increased fisheries management and climatic disturbance. Aquat Conserv: Mar Freshwater Ecosys 19:758–771

    Article  Google Scholar 

  • McMurray S, Blum JE, Pawlik JR (2008) Redwood of the reef: Growth and age of the giant barrel sponge Xestospongia muta in the Florida Keys. Mar Biol 155:159–171

    Article  Google Scholar 

  • McMurray SE, Henkel TP, Pawlik JR (2010) Demographics of increasing populations of the giant barrel sponge Xestospongia muta in the Florida Keys. Ecology 91:560–570

    Article  PubMed  Google Scholar 

  • McMurray SE, Johnson ZI, Hunt DE et al (2016) Selective feeding by the giant barrel sponge enhances foraging efficiency. Limnol Oceanogr 61:1271–1286

    Article  Google Scholar 

  • Meylan A (1988) Spongivory in hawksbill turtles: a diet of glass. Science 239:393–395

    Article  CAS  PubMed  Google Scholar 

  • Morrow KM, Fiore CL, Lesser MP (2016) Environmental drivers of microbial community shifts in the giant barrel sponge, Xestospongia muta, over a shallow to mesophotic depth gradient. Environ Microbiol 18:2025–2038

    Article  CAS  PubMed  Google Scholar 

  • Mueller B, de Goeij JM, Vermeij MJA et al (2014a) Natural diet of coral-excavating sponges consists mainly of dissolved organic carbon (DOC). PLoS One 9:e90152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mueller B, van der Zande RM, van Leent PJM et al (2014b) Effect of light availability on dissolved organic carbon release by Caribbean reef algae and corals. Bull Mar Sci 90:875–893

    Article  Google Scholar 

  • Naumann MS, Haas A, Struck U et al (2010) Organic matter release by dominant hermatypic corals of the Northern Red Sea. Coral Reefs 29:649–659

    Article  Google Scholar 

  • Nelson CE, Alldredge AL, McCliment EA et al (2011) Depleted dissolved organic carbon and distinct bacterial communities in the water column of a rapid-flushing coral reef ecosystem. ISME J 5:1374–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson CE, Goldberg SJ, Kelly LW et al (2013) Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. ISME J 7:962–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NOAA (2016) National Centers for Environmental Information. http://www.ncdc.noaa.gov/

    Google Scholar 

  • Norström AV, Nyström M, Lokrantz J et al (2009) Alternative states on coral reefs: beyond coral–macroalgal phase shifts. Mar Ecol Prog Ser 376:295–306

    Article  Google Scholar 

  • Ogawa H, Tanoue E (2003) Dissolved organic matter in oceanic waters. J Oceanogr 59:129–147

    Article  CAS  Google Scholar 

  • O’Neil JM, Capone DG (2008). Nitrogen cycling in coral reef environments. In: Capone DG, Bronk DA, Mulholland MR, Carpenter EJ (eds) Nitrogen in the marine environment. Elsevier, Amsterdam, pp 949–989

    Google Scholar 

  • Paddack MJ, Reynolds JD, Aguilar C et al (2009) Recent region-wide declines in Caribbean reef fish abundance. Curr Biol 19:590–595

    Article  CAS  PubMed  Google Scholar 

  • Pandolfi JM, Jackson JBC, Baron N et al (2005) Ecology—are US coral reefs on the slippery slope to slime? Science 307:1725–1726

    Article  CAS  PubMed  Google Scholar 

  • Pawlik JR (2011) The chemical ecology of sponges on Caribbean reefs: natural products shape natural systems. Bioscience 61:888–898

    Article  Google Scholar 

  • Pawlik JR, Chanas B, Toonen R et al (1995) Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Mar Ecol Prog Ser 127:183–194

    Article  CAS  Google Scholar 

  • Pawlik JR, McMurray SE, Erwin P et al (2015a) A review of evidence for food-limitation of sponges on Caribbean reefs. Mar Ecol Prog Ser 519:265–283

    Article  CAS  Google Scholar 

  • Pawlik JR, McMurray SE, Erwin P et al (2015b) No evidence for food limitation of Caribbean reef sponges: reply to Slattery & Lesser (2015). Mar Ecol Prog Ser 527:281–284

    Article  Google Scholar 

  • Pawlik JR, Burkepile DE, Thurber RV (2016) A vicious circle? Altered carbon and nutrient cycling may explain the low resilience of Caribbean coral reefs. Bioscience 66:470–476

    Article  Google Scholar 

  • Perea-Blazquez A, Davy SK, Bell JJ (2012) Estimates of particulate organic carbon flowing from the pelagic environment to the benthos through sponge assemblages. PLoS One 7:e29569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pile AJ, Patterson MR, Witman JD (1996) In situ grazing on plankton <10 μm by the boreal sponge Mycale lingua. Mar Ecol Prog Ser 141:95–102

    Article  Google Scholar 

  • Pile AJ, Patterson MR, Savarese M et al (1997) Trophic effects of sponge feeding within lake Baikal’s littoral zone. 2. Sponge abundance, diet, feeding efficiency, and carbon flux. Limnol Oceanogr 42:178–184

    Article  CAS  Google Scholar 

  • Pörtner HO et al (2014) Ocean systems. In: Field CB et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 411–484

    Google Scholar 

  • Powell A, Smith DJ, Hepburn LJ et al (2014) Reduced diversity and high sponge abundance on a sedimented indo-pacific reef system: Implications for future changes in environmental quality. PLoS One 9:e85253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Price NN, Martz TR, Brainard RE et al (2012) Diel variability in seawater pH relates to calcification and benthic community structure on coral reefs. PLoS One 7:e43843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randall JE, Hartman W (1968) Sponge-feeding fishes of the west indies. Mar Biol 1:216–225

    Article  Google Scholar 

  • Reece JB, Urry LA, Cain ML et al (2014) Campbell biology, 10th edn. Pearson, Boston

    Google Scholar 

  • Reichelt RE, Loya Y, Bradbury RH (1986) Patterns in the use of space by benthic communities on two coral reefs of the great barrier reef. Coral Reefs 5:73–79

    Article  Google Scholar 

  • Reiswig HM (1971) Particle feeding in natural populations of three marine demosponges. Biol Bull 141:568–591

    Article  Google Scholar 

  • Reiswig HM (1981) Partial carbon and energy budgets of the bacteriosponge Verongia fistularis (Porifera: Demospongiae) in Barbados. Mar Ecol 2:273–293

    Article  CAS  Google Scholar 

  • Ribes M, Coma R, Gili JM (1999) Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratida) throughout an annual cycle. Mar Ecol Prog Ser 176:179–190

    Article  Google Scholar 

  • Ribes M, Coma R, Atkinson MJ et al (2003) Particle removal by coral reef communities: Picoplankton is a major source of nitrogen. Mar Ecol Prog Ser 257:13–23

    Article  Google Scholar 

  • Ribes M, Coma R, Atkinson MJ et al (2005) Sponges and ascidians control removal of particulate organic nitrogen from coral reef water. Limnol Oceanogr 50:1480–1489

    Article  CAS  Google Scholar 

  • Ribes M, Jimenez E, Yahel G et al (2012) Functional convergence of microbes associated with temperate marine sponges. Environ Microbiol 14:1224–1239

    Article  CAS  PubMed  Google Scholar 

  • Richter C, Wunsch M, Rasheed M et al (2001) Endoscopic exploration of red sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413:726–730

    Article  CAS  PubMed  Google Scholar 

  • Rix L, de Goeij JM, Mueller CE et al (2016a) Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems. Nat Sci Rep 6:18715

    Article  CAS  Google Scholar 

  • Rix L, de Goeij JM, van Oevelen D et al (2016b) Differential recycling of coral and algal dissolved organic matter via the sponge loop. Funct Ecol 31:778–789. doi:10.1111/1365-2435.12758

    Article  Google Scholar 

  • Rohwer F, Youle M, Vosten D (2010) Coral reefs in the microbial seas. Plaid Press, Granada Hills, 39 pp

    Google Scholar 

  • Scheffers SR (2005) Benthic-pelagic coupling in coral reefs: Interaction between framework cavities and reef water. PhD dissertation, University of Amsterdam

    Google Scholar 

  • Scheffers S, Nieuwland G, Bak RPM et al (2004) Removal of bacteria and nutrient dynamics within the coral reef framework of Curaçao (Netherlands Antilles). Coral Reefs 23:413–422

    Article  Google Scholar 

  • Scheffers SR, Bak RPM, Van Duyl FC (2005) Why is bacterioplankton growth in coral reef framework cavities enhanced? Mar Ecol Prog Ser 299:89–99

    Article  Google Scholar 

  • Schönberg CH (2008) A history of sponge erosion: from past myths and hypotheses to recent approaches. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 165–202

    Chapter  Google Scholar 

  • Shore RE (1971) Growth and renewal studies of the choanocyte population in Hymeniacidon sinapium (Porifera: Demospongiae) using colcemid and 3-H thymidine. J Exp Zool 177:359–363

    Article  CAS  Google Scholar 

  • Siebers D (1982) Bacterial-invertebrate interactions in uptake of dissolved organic matter. Am Zool 22:723–733

    Article  Google Scholar 

  • Slattery M, Lesser MP (2012) Mesophotic coral reefs: a global model of community structure and function. Proc 12th Int Coral Reef Symp, Cairns

    Google Scholar 

  • Slattery M, Lesser MP (2015) Trophic ecology of sponges from shallow to mesophotic depths (3 to 150 m): comment on Pawlik et al. (2015). Mar Ecol Prog Ser 527:275–279

    Article  Google Scholar 

  • Slattery M, Gochfield DB, Easson CG et al (2013) Facilitation of coral reef biodiversity and health by cave sponge communities. Mar Ecol Prog Ser 476:71–86

    Article  Google Scholar 

  • Slattery M, Gochfeld DJ, Diaz MC et al (2016) Variability in chemical defense across a shallow to mesophotic depth gradient in the Caribbean sponge Plakortis angulospiculatus. Coral Reefs 35:11–22

    Article  Google Scholar 

  • Smith TB, Blondeau J, Nemeth RS et al (2010) Benthic structure and cryptic mortality in a Caribbean mesophotic coral reef bank system, the Hind Bank Marine Conservation District, U.S. Virgin Islands. Coral Reefs 29:289–308

    Article  Google Scholar 

  • Smith JE, Price NN, Nelson CE et al (2013) Coupled changes in oxygen concentration and pH caused by metabolism of benthic coral reef organisms. Mar Biol 160:2437–2447

    Article  CAS  Google Scholar 

  • Southwell MW, Popp BN, Martens CS (2008a) Nitrification controls on fluxes and isotopic composition of nitrate from Florida Keys sponges. Mar Chem 108:96–108

    Article  CAS  Google Scholar 

  • Southwell MW, Weisz JB, Martens CS et al (2008b) In situ fluxes of dissolved inorganic nitrogen from the sponge community on conch reef, Key Largo, Florida. Limnol Oceanogr 53:986–996

    Article  CAS  Google Scholar 

  • Steindler L, Huchon D, Avni A et al (2005) 16S rRNA phylogeny of sponge-associated cyanobacteria. Appl Environ Microbiol 71:4127–4131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuhldreier I, Sánchez-Noguera C, Roth F et al (2015) Dynamics in benthic community composition and influencing factors in an upwelling-exposed coral reef on the Pacific Coast of Costa Rica. PeerJ 3:e1434

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Miyajima T, Watanabe A et al (2011) Distribution of dissolved organic carbon and nitrogen in a coral reef. Coral Reefs 30:533–541

    Article  Google Scholar 

  • Taupin P (2007) BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation. Brain Res Rev 53:198–214

    Article  CAS  PubMed  Google Scholar 

  • Taylor MW, Radax R, Steger D et al (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thacker RW, Freeman CJ (2012) 2 sponge-microbe symbioses: recent advances and new directions. Adv Mar Biol 62:57

    Article  PubMed  Google Scholar 

  • Torréton J-P, Pages J, Dufour P et al (1997) Bacterioplankton carbon growth yield and DOC turnover in some coral reef lagoons. In: Lessios HA, Macintyre IG (eds) Proc 8th Int Coral Reef Symp, Smithsonian Tropical Research Institute, Panama

    Google Scholar 

  • Trautman DA, Hinde R (2002) Sponge/algal symbioses: a diversity of associations. In: SeckBach J (ed) Symbiosis. Springer, Dordrecht, pp 521–537

    Google Scholar 

  • Trussell GC, Lesser MP, Patterson MR et al (2006) Depth-specific differences in growth of the reef sponge Callyspongia vaginalis: role of bottom-up effects. Mar Ecol Prog Ser 323:149–158

    Article  Google Scholar 

  • Usher KM (2008) The ecology and phylogeny of cyanobacterial symbionts in sponges. Mar Ecol 29:178–192

    Article  Google Scholar 

  • Van Duyl FC, Gast GJ (2001) Linkage of small-scale spatial variations in DOC, inorganic nutrients and bacterioplankton growth with different coral reef water types. Aquat Microb Ecol 24:17–26

    Article  Google Scholar 

  • Van Duyl F, Scheffers S, Thomas F et al (2006) The effect of water exchange on bacterioplankton depletion and inorganic nutrient dynamics in coral reef cavities. Coral Reefs 25:23–36

    Article  Google Scholar 

  • Van Soest RWM, Boury-Esnault N, Hooper JNA et al (2017) World Porifera database. http://www.marinespecies.org/porifera. Accessed 23 Jun 2017

  • Vroom PS, Musburger CA, Cooper SW et al (2010) Marine biological community baselines in unimpacted tropical ecosystems: spatial and temporal analysis of reefs at Howland and Baker Islands. Biodivers Conserv 19:797–812

    Article  Google Scholar 

  • Waters CN, Zalasiewicz J, Summerhayes C et al (2016) The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351:137–147

    Article  CAS  Google Scholar 

  • Webster NS, Wilson KJ, Blackall LL et al (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisz JB, Lindquist N, Martens CS (2008) Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia 155:367–376

    Article  PubMed  Google Scholar 

  • Weisz JB, Massaro AJ, Ramsby BD et al (2010) Zooxanthellar symbionts shape host sponge trophic status through translocation of carbon. Biol Bull 219:189–197

    Article  PubMed  Google Scholar 

  • Wild C, Rasheed M, Werner U et al (2004a) Degradation and mineralization of coral mucus in reef environments. Mar Ecol Prog Ser 267:159–171

    Article  Google Scholar 

  • Wild C, Huettel M, Klueter A et al (2004b) Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428:66–70

    Article  CAS  PubMed  Google Scholar 

  • Wild C, Naumann M, Haas A et al (2009) Coral sand O2 uptake and pelagic-benthic coupling in a subtropical fringing reef, Aqaba, Red Sea. Aquat Biol 6:133–142

    Article  Google Scholar 

  • Wild C, Niggl W, Naumann MS et al (2010) Organic matter release by red sea coral reef organisms-potential effects on microbial activity and in situ O-2 availability. Mar Ecol Prog Ser 411:61–71

    Article  CAS  Google Scholar 

  • Wilkinson CR (1979) Nutrient translocation from symbiotic cyanobacteria to coral reef sponges. In: Levi C, Boury-Esnault N (eds) Colloques internationaux du CNRS, No 291 edn—biologic des spongiaires. Editions du CNRS, Paris, pp 373–380

    Google Scholar 

  • Wilkinson CR (1983) Net primary productivity in coral reef sponges. Science 219:410–412

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson CR (1987) Productivity and abundance of large sponge populations on flinders reef flats, Coral Sea. Coral Reefs 5:183–188

    Article  Google Scholar 

  • Wilkinson CR (2008) Status of coral reefs of the world: 2008. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, Townsville, 296 pp

    Google Scholar 

  • Wilkinson CR, Cheshire AC (1989) Patterns in the distribution of sponge populations across the central great barrier reef. Coral Reefs 8:127–134

    Article  Google Scholar 

  • Wilkinson CR, Cheshire AC (1990) Comparisons of sponge populations across the barrier reefs of Australia and Belize: evidence for higher productivity in the Caribbean. Mar Ecol Prog Ser 67:285–294

    Article  Google Scholar 

  • Wilkinson CR, Evans E (1989) Sponge distribution across Davies reef, great barrier reef, relative to location, depth, and water movement. Coral Reefs 8:1–7

    Article  Google Scholar 

  • Wilkinson CR, Fay P (1979) Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature 279:527–529

    Article  CAS  Google Scholar 

  • Wilkinson CR, Trott LA (1985) Light as a factor determining the distribution of sponges across the central great barrier reef. In: Harmelin-Vivien M, Salvat B (eds) Proc 5th Int Coral Reef Symp, Tahiti

    Google Scholar 

  • Wilkinson CR, Summons R, Evans EA (1999) Nitrogen fixation in symbiotic marine sponges: ecological significance and difficulties in detection. Mem Queensl Mus 44:667–673

    Google Scholar 

  • Wilson DE, Reeder DM (2005) Mammal species of the world: a taxonomic and geographic reference. JHU Press, Baltimore

    Google Scholar 

  • Wootton JT, Pfister CA, Forester JD (2008) Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proc Natl Acad Sci 105:18848–18853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wulff JL (2001) Assessing and monitoring coral reef sponges: why and how? Bull Mar Sci 69:831–846

    Google Scholar 

  • Wulff JL (2006) Resistance vs recovery: morphological strategies of coral reef sponges. Funct Ecol 20:699–708

    Article  Google Scholar 

  • Wulff JL (2010) Regeneration of sponges in ecological context: is regeneration an integral part of life history and morphological strategies? Integr Comp Biol 50:494–505

    Article  PubMed  Google Scholar 

  • Wunsch M, Al-Moghrabi S, Kötter I (2000) Communities of coral reef cavities in Jordan, Gulf of Aqaba (Red Sea). In: Moosa MK (ed) Proc 9th Int Coral Reef Symp, Bali, Indonesia

    Google Scholar 

  • Yahel G, Sharp JH, Marie D et al (2003) In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: bulk DOC is the major source for carbon. Limnol Oceanogr 48:141–149

    Article  Google Scholar 

  • Yahel G, Eerkes-Medrano DI, Leys SP (2006) Size independent selective filtration of ultraplankton by hexactinellid glass sponges. Aquat Microb Ecol 45:181–194

    Article  Google Scholar 

  • Yahel G, Whitney F, Reiswig HM et al (2007) In situ feeding and metabolism of glass sponges (Hexactinellida, Porifera) studied in a deep temperate fjord with a remotely operated submersible. Limnol Oceanogr 52:428–440

    Article  CAS  Google Scholar 

  • Zea S, Henkel TP, Pawlik JR (2014) The sponge guide: a picture guide to Caribbean sponges, 3rd edn. Universidad Nacional de Colombia, Bogotá. www.spongeguide.org

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasper M. de Goeij .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Goeij, J.M., Lesser, M.P., Pawlik, J.R. (2017). Nutrient Fluxes and Ecological Functions of Coral Reef Sponges in a Changing Ocean. In: Carballo, J., Bell, J. (eds) Climate Change, Ocean Acidification and Sponges. Springer, Cham. https://doi.org/10.1007/978-3-319-59008-0_8

Download citation

Publish with us

Policies and ethics