Advertisement

Sponges as Proxies for Past Climate Change Events

  • Carina Sim-SmithEmail author
  • Michael Ellwood
  • Michelle Kelly
Chapter

Abstract

An understanding of past environmental conditions and the processes that govern change is essential in order to predict future climate changes. Historical environmental conditions can be reconstructed based on the composition of mineral skeletons of marine organisms. Some marine sponges, such as the hypercalcified (‘sclerosponge’) sponges, the desma-bearing (‘lithistid’) sponges and hexactinellid (glass) sponges, are estimated to live for hundreds to thousands of years. These sponges accrete elements in isotopic equilibrium with seawater, making them good potential Paleoclimate indicators. We review the literature on the use of sponges as proxies for climate change. The accuracy of sponge proxy data is highly dependent on the accuracy of dating methods, and multiple samples per specimen are recommended to confirm the reproducibility of results. δ13Carbon values in shallow-water hypercalcified sponges appear to be a good proxy for atmospheric carbon dioxide concentrations, with good correlations between δ13carbon measurements from sponge skeletons and atmospheric carbon dioxide concentrations. Results using δ18oxygen values and strontium/calcium ratios as proxies for temperature are mixed, and results appear to be influenced by sponge species and region. δ30Silicon values in siliceous sponge spicules from dated sediment cores appear to be a good proxy for long-term changes in ocean silicon concentrations. Quantification of zinc/silicon and germanium/silicon ratios in sponges also show potential as proxies for ocean silicon concentrations, but more research is needed in this area. In summary, research on a number of sponge proxies has shown promising results for use as Paleoclimate indicators. Application of these proxies generally produces climatic reconstructions that are in agreement with published results from other proxies. However, much more research is needed to further develop sponge proxies and to gain a better understanding of the processes that control both the incorporation of the proxy within the sponge and its concentration in the surrounding water.

Keywords

Porifera Paleoclimate Proxy Temperature Carbon dioxide 

References

  1. Allison N, Tudhope AW, EIMF (2012) The skeletal geochemistry of the sclerosponge Astrosclera willeyana: implications for biomineralisation processes and palaeoenvironmental reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 313–314:70–77. doi: 10.1016/j.palaeo.2011.10.009 CrossRefGoogle Scholar
  2. Andersen KK, Azuma N, Barnola JM, Bigler M, Biscaye P, Caillon N, Chappellaz J, Clausen HB, Dahl-Jensen D, Fischer H, Flückiger J, Fritzsche D, Fujii Y, Goto-Azuma K, Grønvold K, Gundestrup NS, Hansson M, Huber C, Hvidberg CS, Johnsen SJ, Jonsell U, Jouzel J, Kipfstuhl S, Landais A, Leuenberger M, Lorrain R, Masson-Delmotte V, Miller H, Motoyama H, Narita H, Popp T, Rasmussen SO, Raynaud D, Rothlisberger R, Ruth U, Samyn D, Schwander J, Shoji H, Siggard-Andersen ML, Steffensen JP, Stocker T, Sveinbjörnsdóttir AE, Svensson A, Takata M, Tison JL, Thorsteinsson T, Watanabe O, Wilhelms F, White JWC (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431(7005):147–151. doi: 10.1038/nature02805 PubMedCrossRefGoogle Scholar
  3. Audi G, Bersillon O, Blachot J, Wapstra AH (2003) The Nubase evaluation of nuclear and decay properties. Nucl Phys A 729(1):3–128. doi: 10.1016/j.nuclphysa.2003.11.001 CrossRefGoogle Scholar
  4. Beck JW, Edwards RL, Ito E, Taylor FW, Recy J, Rougerie F, Joannot P, Henin C (1992) Sea-surface temperature from coral skeletal strontium/calcium ratios. Science 257:644–647PubMedCrossRefGoogle Scholar
  5. Benavides LM, Druffel ERM (1986) Sclerosponge growth rate as determined by 210Pb and Δ 14C chronologies. Coral Reefs 4(4):221–224CrossRefGoogle Scholar
  6. Böhm F, Joachimski MM, Lehnert H, Morgenroth G, Kretschmer W, Vacelet J, Dullo WC (1996) Carbon isotope records from extant Caribbean and South Pacific sponges: evolution of δ13C in surface water DIC. Earth Planet Sci Lett 139(1–2):291–303. doi: 10.1016/0012-821X(96)00006-4 CrossRefGoogle Scholar
  7. Böhm F, Joachimski MM, Dullo W-C, Eisenhauer A, Lehnert H, Reitner J, Wörheide G (2000) Oxygen isotope fractionation in marine aragonite of coralline sponges. Geochim Cosmochim Acta 64(10):1695–1703. doi: 10.1016/S0016-7037(99)00408-1 CrossRefGoogle Scholar
  8. Böhm F, Haase-Schramm A, Eisenhauer A, Dullo W-C, Joachimski MM, Lehnert H, Reitner J (2002) Evidence for preindustrial variations in the marine surface water carbonate system from coralline sponges. Geochem Geophys Geosyst 3(3):1–13CrossRefGoogle Scholar
  9. Cardinal D, Hamelin B, Bard E, Pätzold J (2001) Sr/Ca, U/Ca ad δ18O records in recent massive corals from Bermuda: relationships with sea surface temperature. Chem Geol 176(1–4):213–233. doi: 10.1016/S0009-2541(00)00396-X CrossRefGoogle Scholar
  10. Chombard C, Boury-Esnault N, Tillier A, Vacelet J (1997) Polyphyly of ‘Sclerosponges’ (Porifera, Demospongiae) supported by 28S ribosomal sequences. Biol Bull 193(3):359–367PubMedCrossRefGoogle Scholar
  11. Cohen AL, Owens KE, Layne GD, Shimizu N (2002) The effect of algal symbionts on the accuracy of Sr/Ca paleotemperatures from coral. Science 296(5566):331–333. doi: 10.1126/science.1069330 PubMedCrossRefGoogle Scholar
  12. de la Rocha CL, Brzezinski MA, DeNiro MJ (1997) Fractionation of silicon isotopes by marine diatoms during biogenic silica formation. Geochim Cosmochim Acta 61(23):5051–5056. doi: 10.1016/S0016-7037(97)00300-1 CrossRefGoogle Scholar
  13. de Villiers S, Nelson BK, Chivas AR (1995) Biological controls on coral Sr/Ca and δ18O reconstructions of sea surface temperatures. Science 269(5228):1247–1249PubMedCrossRefGoogle Scholar
  14. Druffel ERM, Benavides LM (1986) Input of excess CO2 to the surface ocean based on 13C/12C ratios in a Jamaican sclerosponge. Nature 321(6023):58–61CrossRefGoogle Scholar
  15. Dunstan P, Sacco WK (1982) The sclerosponges of Chalet Caribe Reef. Discovery 16:13–17Google Scholar
  16. Edwards RL, Chen JH, Wasserburg GJ (1987) 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet Sci Lett 81(2–3):175–192. doi: 10.1016/0012-821X(87)90154-3 CrossRefGoogle Scholar
  17. Ellwood MJ, Kelly M (2003) Sponge “tree rings”: new indicators of ocean variability? Water Atmos 11(2):25–27Google Scholar
  18. Ellwood MJ, Kelly M, Nodder SD, Carter L (2004) Zinc/silicon ratios of sponges: a proxy for carbon export to the sea floor. Geophys Res Lett 31:L12308CrossRefGoogle Scholar
  19. Ellwood MJ, Kelly M, Neil H, Nodder SD (2005) Reconstruction of paleo–particulate organic carbon fluxes for the Campbell Plateau region of southern New Zealand using the zinc content of sponge spicules. Paleoceanography 20:PA3010. doi: 10.1029/2004PA001095 CrossRefGoogle Scholar
  20. Ellwood MJ, Kelly M, Maher WA, de Deckker P (2006) Germanium incorporation into sponge spicules: development of a proxy for reconstructing inorganic germanium and silicon concentrations in seawater. Earth Planet Sci Lett 243:749–759CrossRefGoogle Scholar
  21. Ellwood MJ, Kelly M, de Forges BR (2007) Silica banding in the deep-sea lithistid sponge Corallistes undulatus: investigating the potential influence of diet and environment on growth. Limnol Oceanogr 52(5):1865–1873CrossRefGoogle Scholar
  22. Ellwood MJ, Wille M, Maher WA (2010) Glacial silicic acid concentrations in the Southern Ocean. Science 330(6007):1088–1091PubMedCrossRefGoogle Scholar
  23. Emerson S, Hedges JI (1988) Processes controlling the organic carbon content of open ocean sediments. Paleoceanography 3(5):621–634. doi: 10.1029/PA003i005p00621 CrossRefGoogle Scholar
  24. Fallon SJ, Guilderson TP (2005) Extracting growth rates from the nonlaminated coralline sponge Astrosclera willeyana using bomb radiocarbon. Limnol Oceanogr Methods 3:455–461CrossRefGoogle Scholar
  25. Fallon SJ, Guilderson TP, Caldeira K (2003a) Carbon isotope constraints on vertical mixing and air-sea CO2 exchange. Geophys Res Lett 30(24):2289. doi: 10.1029/2003GL018049 CrossRefGoogle Scholar
  26. Fallon SJ, Mcculloch MT, Alibert C (2003b) Examining water temperature proxies in porites corals from the Great Barrier Reef: a cross-shelf comparison. Coral Reefs 22(4):389–404CrossRefGoogle Scholar
  27. Fallon SJ, McCulloch MT, Guilderson TP (2005) Interpreting environmental signals from the coralline sponge Astrosclera willeyana. Palaeogeogr Palaeoclimatol Palaeoecol 228(1–2):58–69. doi: 10.1016/j.palaeo.2005.03.053 CrossRefGoogle Scholar
  28. Fallon SJ, James K, Norman R, Kelly M, Ellwood MJ (2010) A simple radiocarbon dating method for determining the age and growth rate of deep-sea sponges. Nucl Instrum Methods Phys Res, Sect B 268(7–8):1241–1243. doi: 10.1016/j.nimb.2009.10.143 CrossRefGoogle Scholar
  29. Fifield LK, Morgenstern U (2009) Silicon-32 as a tool for dating the recent past. Quat Geochronol 4(5):400–405. doi: 10.1016/j.quageo.2008.12.006 CrossRefGoogle Scholar
  30. Froelich PN, Andreae MO (1981) The marine geochemistry of germanium: ekasilicon. Science 213(4504):205–207PubMedCrossRefGoogle Scholar
  31. Froelich PN, Mortlock RA, Shemesh A (1989) Inorganic germanium and silica in the Indian Ocean: biological fractionation during (Ge/Si) OPAL formation. Global Biogeochem Cycles 3(1):79–88. doi: 10.1029/GB003i001p00079 CrossRefGoogle Scholar
  32. Gilis M, Grauby O, Willenz P, Dubois P, Heresanu V, Baronnet A (2013) Biomineralization in living hypercalcified demosponges: toward a shared mechanism? J Struct Biol 183(3):441–454. doi: 10.1016/j.jsb.2013.05.018 PubMedCrossRefGoogle Scholar
  33. Grossman EL (1987) Stable isotopes in modern benthic foraminifera: a study of vital effect. J Foraminifer Res 17(1):48–61CrossRefGoogle Scholar
  34. Grottoli AG (2006) Monthly resolved stable oxygen isotope record in a Palauan sclerosponge Acanthocheatetes wellsi for the period of 1977–2001. In: Suzuki Y, Nakamori T, Hidaka M et al (eds) Proceedings of the 10th international coral reef symposium, Okinawa, Japan, 28 June–2 July, 2004. Japanese Coral Reef Society, Tokyo, pp 572–579Google Scholar
  35. Grottoli AG, Adkins JF, Panero WR, Reaman DM, Moots K (2010) Growth rates, stable oxygen isotopes (δ18O), and strontium (Sr/Ca) composition in two species of Pacific sclerosponges (Acanthocheatetes wellsi and Astrosclera willeyana) with δ18O calibration and application to paleoceanography. J Geophys Res Oceans 115(6):C06008. doi: 10.1029/2009JC005586 Google Scholar
  36. Haase-Schramm A, Böhm F, Eisenhauer A, Dullo W-C, Joachimski MM, Hansen B, Reitner J (2003) Sr/Ca ratios and oxygen isotopes from sclerosponges: temperature history of the Caribbean mixed layer and thermocline during the Little Ice Age. Paleoceanography 18(3):18.11–18.15. doi: 10.1029/2002PA000830 CrossRefGoogle Scholar
  37. Hammond DE, McManus J, Berelson WM, Meredith C, Klinkhammer GP, Coale KH (2000) Diagenetic fractionation of Ge and Si in reducing sediments: the missing Ge sink and a possible mechanism to cause glacial/interglacial variations in oceanic Ge/Si. Geochim Cosmochim Acta 64(14):2453–2465. doi: 10.1016/S0016-7037(00)00362-8 CrossRefGoogle Scholar
  38. Hammond DE, McManus J, Berelson WM (2004) Oceanic germanium/silicon ratios: evaluation of the potential overprint of temperature on weathering signals. Paleoceanography 19(2). doi: 10.1029/2003PA000940
  39. Hartman WD, Goreau TF (1970) Jamaican coralline sponges: their morphology, ecology and fossil relatives. Symp Zool Soc Lond 25:205–243Google Scholar
  40. Hartman WD, Goreau TF (1972) Ceratoporella (Porifera: Sclerospongiae) and the chaetetid “corals”. Trans Connecticut Acad Arts Sci 44:133–148Google Scholar
  41. Hartman WD, Goreau TF (1975) A Pacific tabulate sponge, living representative of a new order of sclerosponges. Postilla 167:1–21CrossRefGoogle Scholar
  42. Hendry KR, Andersen MB (2013) The zinc isotopic composition of siliceous marine sponges: investigating nature’s sediment traps. Chem Geol 354:33–41. doi: 10.1016/j.chemgeo.2013.06.025 CrossRefGoogle Scholar
  43. Hendry KR, George RB, Rickaby REM, Robinson LF, Halliday AN (2010) Deep ocean nutrients during the Last Glacial Maximum deduced from sponge silicon isotopic compositions. Earth Planet Sci Lett 292:290–300CrossRefGoogle Scholar
  44. Hendry KR, Leng MJ, Robinson LF, Sloane HJ, Blusztjan J, Rickaby REM, Georg RB, Halliday AN (2011) Silicon isotopes in Antarctic sponges: an interlaboratory comparison. Antarct Sci 23(1):34–42CrossRefGoogle Scholar
  45. Hughes GB, Thayer CW (2001) Sclerosponges: potential high-resolution recorders of marine paleotemperatures. In: Gerhard LC, Harrison WE, Hanson BM (eds) Geological perspectives of global climate change. American Association of Petroleum Geologists, Tulsa, pp 137–151Google Scholar
  46. Jochum KP, Wang X, Vennemann TW, Sinha B, Müller WEG (2012) Siliceous deep-sea sponge Monorhaphis chuni: a potential paleoclimate archive in ancient animals. Chem Geol 300–301:143–151. doi: 10.1016/j.chemgeo.2012.01.009 CrossRefGoogle Scholar
  47. Johnsen SJ, Dahl-Jensen D, Gundestrup N, Steffensen JP, Clausen HB, Miller H, Masson-Delmotte V, Sveinbjörnsdottir AE, White J (2001) Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J Quat Sci 16(4):299–307. doi: 10.1002/jqs.622 CrossRefGoogle Scholar
  48. Keeling CD (1979) The Suess effect: 13Carbon–14Carbon interrelations. Environ Int 2(4):229–300. doi: 10.1016/0160-4120(79)90005-9 CrossRefGoogle Scholar
  49. Kelly M (2007) The marine fauna of New Zealand: Porifera: lithistid demospongiae (rock sponges). National Institute of Water and Atmospheric Research, Wellington. NIWA Biodiversity Memoir no. 121Google Scholar
  50. King SL, Froelich PN, Jahnke RA (2000) Early diagenesis of germanium in sediments of the Antarctic South Atlantic: in search of the missing Ge sink. Geochim Cosmochim Acta 64(8):1375–1390. doi: 10.1016/S0016-7037(99)00406-8 CrossRefGoogle Scholar
  51. Kisakürek B, Eisenhauer A, Böhm F, Garbe-Schönberg D, Erez J (2008) Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white). Earth Planet Sci Lett 273(3–4):260–269. doi: 10.1016/j.epsl.2008.06.026 CrossRefGoogle Scholar
  52. Klein RT, Lohmann KC, Thayer CW (1996) Bivalve skeletons record sea-surface temperature and δ18O via Mg/Ca and 18O/16O ratios. Geology 24(5):415–418CrossRefGoogle Scholar
  53. Lal D, Nijampurkar VN, Somayajulu BLK (1970) Concentration of cosmogenic 32Si in deep Pacific and Indian waters based on study of Galathea deep-sea siliceous sponges. Galathea Rep 11:247–256Google Scholar
  54. Lazareth CE, Willenz P, Navez J, Keppens E, Deharis F, Andre L (2000) Sclerosponges as a new potential recorder of environmental changes: lead in Ceratoporella nicholsoni. Geology 28:515–518CrossRefGoogle Scholar
  55. Leng MJ, Swann GEA, Hodson MJ, Tyler JJ, Patwardhan SV, Sloane HJ (2009) The potential use of silicon isotope composition of biogenic silica as a proxy for environmental change. Silicon 1(2):65–77. doi: 10.1007/s12633-009-9014-2 CrossRefGoogle Scholar
  56. Mann DG (1999) The species concept in diatoms. Phycologia 38:437–495CrossRefGoogle Scholar
  57. McConnaughey T (1989) 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochim Cosmochim Acta 53(1):151–162. doi: 10.1016/0016-7037(89)90282-2 CrossRefGoogle Scholar
  58. McCulloch MT, Gagan MK, Mortimer GE, Chivas AR, Isdale PJ (1994) A high-resolution Sr/Ca and δ18O coral record from the Great Barrier Reef, Australia, and the 1982–1983 El Niño. Geochim Cosmochim Acta 58(12):2747–2754. doi: 10.1016/0016-7037(94)90142-2 CrossRefGoogle Scholar
  59. McCulloch MT, Tudhope AW, Esat TM, Mortimer GE, Chappell J, Pillans B, Chivas AR, Omura A (1999) Coral record of equatorial sea-surface temperatures during the penultimate deglaciation at Huon Peninsula. Science 283(5399):202–204. doi: 10.1126/science.283.5399.202 PubMedCrossRefGoogle Scholar
  60. McManus J, Hammond DE, Cummins K, Klinkhammer GP, Berelson WM (2003) Diagenetic Ge-Si fractionation in continental margin environments: further evidence for a nonopal Ge sink. Geochim Cosmochim Acta 67(23):4545–4557. doi: 10.1016/S0016-7037(03)00385-5 CrossRefGoogle Scholar
  61. Mitsuguchi T, Matsumoto E, Abe O, Uchida T, Isdale PJ (1996) Mg/Ca thermometry in coral skeletons. Science 274(5289):961–963PubMedCrossRefGoogle Scholar
  62. Moore MD, Charles CD, Rubenstone JL, Fairbanks RG (2000) U/Th-dated sclerosponges from the Indonesian Seaway record subsurface adjustments to west Pacific winds. Paleoceanography 15(4):404–416. doi: 10.1029/1999PA000396 CrossRefGoogle Scholar
  63. Müller WEG, Jochum KP, Stoll B, Wang X (2008) Formation of giant spicule from quartz glass by the deep sea sponge Monorhaphis. Chem Mater 20(14):4703–4711. doi: 10.1021/cm800734q CrossRefGoogle Scholar
  64. Murozumi M, Chow TJ, Patterson C (1969) Chemical concentrations of pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and Antarctic snow strata. Geochim Cosmochim Acta 33:1247–1294CrossRefGoogle Scholar
  65. Neftel A, Moor E, Oeschger H, Stauffer B (1985) Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature 315(6014):45–47CrossRefGoogle Scholar
  66. Pisera A (2003) Some aspects of silica deposition in lithistid demosponge desmas. Microsc Res Tech 62(4):312–326. doi: 10.1002/jemt.10398 PubMedCrossRefGoogle Scholar
  67. Pisera A, Lévi C (2002) ‘Lithistid’ demospongiae. In: Hooper JNA, van Soest RWM (eds) Systema Porifera. A guide to the classification of sponges, vol 1. Kluwer Academic/Plenum, New York, pp 299–301Google Scholar
  68. Putten EV, Dehairs F, Keppens E, Baeyens W (2000) High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis: environmental and biological controls. Geochim Cosmochim Acta 64(6):997–1011. doi: 10.1016/S0016-7037(99)00380-4 CrossRefGoogle Scholar
  69. Ragueneau O, Tréguer P, Leynaert A, Anderson RF, Brzezinski MA, DeMaster DJ, Dugdale RC, Dymond J, Fischer G, François R, Heinze C, Maier-Reimer E, Martin-Jézéquel V, Nelson DM, Quéguiner B (2000) A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global Planet Change 26(4):317–365. doi: 10.1016/S0921-8181(00)00052-7 CrossRefGoogle Scholar
  70. Ravelo AC, Hillaire-Marcel C (2007) The use of oxygen and carbon isotopes of foraminifera in palaeoceanography. In: Hillaire-Marcel C, de Vernal A (eds) Developments in marine geology, Proxies in late Cenozoic paleoceanography, vol 1. Elsevier, Amsterdam, pp 735–763Google Scholar
  71. Reitner J, Gautret P (1996) Skeletal formation in the modern but ultraconservative chaetetid sponge Spirastrella (Acanthochaetetes) wellsi (Demospongiae, Porifera). Facies 34(1):193–207. doi: 10.1007/bf02546164 CrossRefGoogle Scholar
  72. Reynaud S, Ferrier-Pagès C, Meibom A, Mostefaoui S, Mortlock R, Fairbanks R, Allemand D (2007) Light and temperature effects on Sr/Ca and Mg/Ca ratios in the scleractinian coral Acropora sp. Geochim Cosmochim Acta 71(2):354–362. doi: 10.1016/j.gca.2006.09.009 CrossRefGoogle Scholar
  73. Reynolds BC, Frank M, Halliday AN (2006) Silicon isotope fractionation during nutrient utilization in the North Pacific. Earth Planet Sci Lett 244(1–2):431–443. doi: 10.1016/j.epsl.2006.02.002 CrossRefGoogle Scholar
  74. Riebeek H (2005) Paleoclimatology: the oxygen balance. http://earthobservatory.nasa.gov/Features/Paleoclimatology_OxygenBalance/. Accessed June 2016
  75. Rosenheim B, Swart PK, Thorrold S, Willenz P, Berry L, Latkoczy C (2004) High-resolution Sr/Ca records in sclerosponges calibrated to temperature in situ. Geology 32(2):145–148CrossRefGoogle Scholar
  76. Rosenheim BE, Swart PK, Thorrold SR (2005a) Minor and trace elements in sclerosponge Ceratoporella nicholsoni: biogenic aragonite near the inorganic endmember? Palaeogeogr Palaeoclimatol Palaeoecol 228(1–2):109–129. doi: 10.1016/j.palaeo.2005.03.055 CrossRefGoogle Scholar
  77. Rosenheim BE, Swart PK, Thorrold SR, Eisenhauer A, Willenz P (2005b) Salinity change in the subtropical Atlantic: secular increase and teleconnections to the North Atlantic Oscillation. Geophys Res Lett 32(2):L02603. doi: 10.1029/2004GL021499 CrossRefGoogle Scholar
  78. Rosenheim BE, Swart PK, Eisenhauer A (2007) Constraining initial 230Th activity in incrementally deposited, biogenic aragonite from the Bahamas. Geochim Cosmochim Acta 71(16):4025–4035. doi: 10.1016/j.gca.2007.05.025 CrossRefGoogle Scholar
  79. Rosenheim BE, Swart PK, Willenz P (2009) Calibration of sclerosponge oxygen isotope records to temperature using high-resolution δ18O data. Geochim Cosmochim Acta 73(18):5308–5319. doi: 10.1016/j.gca.2009.05.047 CrossRefGoogle Scholar
  80. Rosenthal Y, Boyle EA, Slowey N (1997) Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: prospects for thermocline paleoceanography. Geochim Cosmochim Acta 61(17):3633–3643CrossRefGoogle Scholar
  81. Rousseau J, Ellwood MJ, Bostock H, Neil H (2016) Estimates of late quaternary mode and intermediate water silicic acid concentration in the Pacific Southern Ocean. Earth Planet Sci Lett 439:101–108. doi: 10.1016/j.epsl.2016.01.023 CrossRefGoogle Scholar
  82. Saenger C, Cohen AL, Oppo DW, Hubbard D (2008) Interpreting sea surface temperature from strontium/calcium ratios in Montastrea corals: link with growth rate and implications for proxy reconstructions. Paleoceanography 23(3). doi: 10.1029/2007PA001572
  83. Schrag DP (1999) Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates. Paleoceanography 14(2):97–102. doi: 10.1029/1998PA900025 CrossRefGoogle Scholar
  84. Shen GT, Boyle EA (1987) Lead in corals: reconstruction of historical industrial fluxes to the surface oceans. Earth Planet Sci Lett 82(3–4):289–304CrossRefGoogle Scholar
  85. Siegenthaler U, Sarmiento JL (1993) Atmospheric carbon dioxide and the ocean. Nature 365(6442):119–125CrossRefGoogle Scholar
  86. Sinclair DJ, Kinsley LPJ, McCulloch MT (1998) High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochim Cosmochim Acta 62(11):1889–1901. doi: 10.1016/S0016-7037(98)00112-4 CrossRefGoogle Scholar
  87. Somayajulu BLK, Lal D, Craig H (1973) Silicon-32 profiles in the South Pacific. Earth Planet Sci Lett 18:181–188CrossRefGoogle Scholar
  88. Sutton JN, Varela DE, Brzezinski MA, Beucher CP (2013) Species-dependent silicon isotope fractionation by marine diatoms. Geochim Cosmochim Acta 104:300–309. doi: 10.1016/j.gca.2012.10.057 CrossRefGoogle Scholar
  89. Swart PK (1983) Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth Sci Rev 19(1):51–80. doi: 10.1016/0012-8252(83)90076-4 CrossRefGoogle Scholar
  90. Swart PK, Moore M, Charles C, Böhm F (1998a) Sclerosponges may hold new keys to marine paleoclimate. Eos 79(52):633–640CrossRefGoogle Scholar
  91. Swart PK, Rubenstone JL, Charles C, Reitner J (1998b) Sclerosponges: a new proxy indicator of climate. National Oceanic and Atmospheric AdministrationGoogle Scholar
  92. Swart PK, Thorrold S, Rosenheim B, Eisenhauer A, Harrison CGA, Grammer M, Latkoczy C (2002) Intra-annual variation in the stable oxygen and carbon and trace element composition of sclerosponges. Paleoceanography 17(3):1045. doi: 10.1029/2000PA000622 CrossRefGoogle Scholar
  93. Uriz M-J (2006) Mineral skeletogenesis in sponges. Can J Zool 84(2):322–356. doi: 10.1139/z06-032 CrossRefGoogle Scholar
  94. Vacelet J (1985) Coralline sponges and the evolution of Porifera. In: Morris SC, George JD, Gibson R, Platt HM (eds) The origins and relationship of lower invertebrates, vol 28. Clarendon Press, Oxford, pp 1–13Google Scholar
  95. Volk T, Hoffert MI (2013) Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: The carbon cycle and atmospheric CO2: natural variations Archean to present. American Geophysical Union, Washington, pp 99–110. doi: 10.1029/GM032p0099 CrossRefGoogle Scholar
  96. Watanabe T, Winter A, Oba T (2001) Seasonal changes in sea surface temperature and salinity during the Little Ice Age in the Caribbean Sea deduced from Mg/Ca and 18O/16O ratios in corals. Mar Geol 173(1–4):21–35. doi: 10.1016/S0025-3227(00)00166-3 CrossRefGoogle Scholar
  97. Weber JN, Woodhead PMJ (1972) Temperature dependence of oxygen-18 concentration in reef coral carbonates. J Geophys Res 77(3):463–473CrossRefGoogle Scholar
  98. Wille M, Sutton J, Ellwood MJ, Sambridge M, Maher W, Eggins S, Kelly M (2010) Silicon isotopic fractionation in marine sponges: a new model for understanding silicon isotopic variations in sponges. Earth Planet Sci Lett 292(3–4):281–289. doi: 10.1016/j.epsl.2010.01.036 CrossRefGoogle Scholar
  99. Willenz P, Hartman WD (1985) Calcification rate of Ceratoporella nicholsoni (Porifera: Sclerospongiae): an in situ study with calcein. In: Delesalle B (ed) Proceedings of the fifth international coral reef congress, Moorea, French Polynesia, Tahiti, 27 May–1 June 1985. Antenne Museum-Ecole Pratique des Hautes Etudes, Moorea, pp 113–118Google Scholar
  100. Willenz P, Hartman WD (1989) Micromorphology and ultrastructure of Caribbean sclerosponges. I. Ceratoporella nicholsoni and Stromatospongia norae (Ceratoporellidae: Porifera). Mar Biol 103:387–401CrossRefGoogle Scholar
  101. Willenz P, Hartman WD (1999) Growth and regeneration rates of the calcareous skeleton of the Caribbean coralline sponge Ceratoporella nicholsoni: a long term survey. Mem Qld Mus 44(1–2):675–685Google Scholar
  102. Wood R (1990a) Non-spicular biomineralization in calcified demosponges. In: Reitner J, Keupp H (eds) Fossil and recent sponges. Springer-Verlag, Berlin Heidelberg, pp 322–340Google Scholar
  103. Wood R (1990b) Reef-building sponges. Am Sci 78(3):224–235Google Scholar
  104. Wörheide G (1998) The reef cave dwelling ultraconservative coralline demosponge Astrosclera willeyana Lister 1900 from the Indo-Pacific. Facies 38(1):1–88. doi: 10.1007/BF02537358 CrossRefGoogle Scholar
  105. Yool A, Tyrrell T (2003) Role of diatoms in regulating the ocean’s silicon cycle. Global Biogeochem Cycles 17(4):1–21. doi: 10.1029/2002GB002018 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Carina Sim-Smith
    • 1
    Email author
  • Michael Ellwood
    • 2
  • Michelle Kelly
    • 3
  1. 1.ClearSight Consultants LtdAucklandNew Zealand
  2. 2.Research School of Earth SciencesThe Australian National UniversityCanberraAustralia
  3. 3.National Institute of Water and Atmospheric Research LtdAucklandNew Zealand

Personalised recommendations