Skip to main content

On the Construction of Dissipative Polynomial Nambu Systems with Limit Cycles

  • Chapter
  • First Online:
  • 899 Accesses

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 109))

Abstract

In this chapter we study nonlinear Nambu systems with canonical dissipation in four dimensions in which prescribed limit cycles arise. For this purpose we discuss some possibilities to apply concepts from the geometry of four-dimensional Euclidean spaces in order to construct a desired intersection by a set of planes and surfaces. Since scalar Nambu functions are needed for the construction of Nambu systems, the relationship between these functions and hypersurfaces will be discussed. We illustrate our considerations by means of two examples of canonical dissipative (CD) Nambu systems in which limit cycles occur. Whereas we considered the synthesis problem of limit cycle circuits with the CD Nambu approach previously, we introduce in this paper an analysis concept based on CD Nambu systems for calculating nonisolated zeros of nonlinear equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nambu, Y.: Generalized hamiltonian dynamics. Phys. Rev. D 7, 2403–2412 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  2. Axenidesa, M., Floratos, E.: Strange attractors in dissipative Nambu mechanics: classical and quantum aspects. J. High Energy Phys. 2010(4), 1–32 (2010)

    Article  MathSciNet  Google Scholar 

  3. Fecko, M.: On symmetries and conserved quantities in Nambu mechanics. J. Math. Phys. 54, 102901 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Mukunda, N., Sudarshan, E.C.G.: Relation between Nambu and Hamiltonian mechanics. Phys. Rev. D 13(10), 2403–2412 (1976)

    Article  MathSciNet  Google Scholar 

  5. Modin, K.: Time transformation and reversibility of Nambu-poisson systems. J. Gen. Lie Theory Appl. 3(1), 39–52 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Steeb, W.-H., Euler, N.: A note on Nambu mechanics. Il Nuovo Cimento B 106(3), 263–272 (1991)

    Article  MathSciNet  Google Scholar 

  7. Wade, A.: Nambu-Dirac structures for Lie algebroids. Lett. Math. Phys. 61, 85–99 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Takhtajan, L.: On foundation of the generalized Nambu mechanics. Commun. Math. Phys. 160, 295–315 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bihlo, A.: Rayleigh-Bénard convection as a Nambu-metriplectic problem. J. Phys. A: Math. Theor. 41, 292001 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Axenides, E. Floratos, Scaling properties of the lorenz system and dissipative nambu mechanics. arXiv:1205.3462v2 [nlin.CD]. Accessed 19 June 2012

  11. Névir, P., Blender, R.: Hamiltonian and Nambu representation of the non-dissipative Lorenz equations. Beitr. Phys. Atmosph. 67(2), 133–140 (1994)

    Google Scholar 

  12. Roupas, Z.: Phase space geometry and chaotic attractors in dissipative Nambu mechanics. arXiv:1110.0766v3 [nlin.CD]. Accessed 25 Apr 2012

  13. Haken, H., Wunderlin, A.: New interpretation and size of strange attractor of the Lorenz model of turbulence. Phys. Lett. 62A, 133–134 (1977)

    Article  MathSciNet  Google Scholar 

  14. Ebeling, W., Sokolov, I.M.: Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems. World Scientific Publ. C. Pte. Ltd., Singapore (2005)

    Book  MATH  Google Scholar 

  15. Frank, T.D.: Active systems with Nambu dynamics: with applications to rod wielding for haptic length perception and self-propagating systems on two-spheres. Eur. Phys. J. B 74, 195–203 (2010)

    Article  Google Scholar 

  16. Frank, T.D.: Fokker-Planck approach to canonical-dissipative Nambu systems: with an application to human motor control during dynamic haptic perception. Phys. Lett. A 374, 3136–3142 (2010)

    Article  MATH  Google Scholar 

  17. Frank, T.D.: Unifying mass-action kinetics and Newtonian mechanics by means of Nambu brackets. J. Biol. Phys. 37, 375–385 (2011)

    Article  Google Scholar 

  18. Mongkolsakulvong, S., Chaikhan, P., Frank, T.D.: Oscillatory nonequilibrium Nambu systems: the canonical-dissipative Yamaleev oscillator. Eur. Phys. J. B, 85–90 (2012)

    Google Scholar 

  19. Mathis, W., Stahl, D., Mathis, R.: Oscillator synthesis based on Nambu Mechanics with Canonical Dissipative Damping. In: Proceedings of the 21st European Conference on Circuit Theory and Design (ECCTD), Dresden, Germany, 18–12 Sept, 2013

    Google Scholar 

  20. Thiessen, T., Mathis, W.: On noise analysis of oscillators based on statistical mechanics. Int. J. Electron. Telecommun. 56, 357–366 (2010)

    Article  Google Scholar 

  21. Mathis, W., Richter, F., Mathis, R.: Stochastic behavior of dissipative hamiltonian systems with limit cycles. In: Proceedings of the MATHMOD 2012, Vienna, Austria, 15–17 February, 2012

    Google Scholar 

  22. Mathis, W., Mathis, R.: Dissipative Nambu systems and oscillator circuit design. IEICE Nonlinear Theory Appl. 5(3), 259–271 (2014)

    Article  Google Scholar 

  23. Andronov, A.A.: Les cycles limites de Poincaré et la théorie des oscillations autoentretenues. Comptes Rendus 189, 559 (1929)

    MATH  Google Scholar 

  24. Mathis, R., Mathis, W.: 4-dimensional polynomial dynamical systems with prescribed algebraic limit cycles using Nambu brackets. In: Proceedings of the Fourth International Workshop on Nonlinear Dynamics and Synchronisation (INDS’15), Klagenfurt, Austria, 31 July 2015

    Google Scholar 

  25. Grozin, A.: Introduction to Mathematica for Physicists. Springer, Cham (2014)

    Book  Google Scholar 

  26. Hulek, K.: Elementary Algebraic Geometry. Student Mathematical Library. American Mathematical Society, Providence (2003)

    Book  MATH  Google Scholar 

  27. Odani, K.: The limit cycle of the van der pol equations is not algebraic. J. Differ. Equ. 115, 146–152 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Weizenöck, R.W.: Der vierdimensionale Raum. Springer Basel AG, Basel (1956)

    Google Scholar 

  29. Aleksandrov, A.D., Kolmogorov, A.N., Lavrent’ev, M.A. (eds.): Mathematics - Its Content, Methods, and Meaning, vol. 3. The MIT Press Massachusetts Institute of Technology Cambridge, Massachusetts (1963)

    Google Scholar 

  30. Smith, K.E., Kahanpää, L., Kekäläinen, P., Treves, W.: An Invitation to Algebraic Geometry. Springer, New York (2000)

    Book  MATH  Google Scholar 

  31. Gürses, M., Guseinov, G.S., Zheltukhin, K.: Dynamical systems and poisson structure. J. Math. Phys. 50, 112703 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Keller, H.B.: Geometrically isolated nonisolated solutions and their approximation. SIAM J. Numer. Anal. 18, 822–838 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  33. Nehrkorn, C.M.: Die 27 Geraden auf einer glatten Kubik (English translation: The 27 straight lines on a smooth cubic), diploma work, University of Freiburg (2010)

    Google Scholar 

  34. Christopher, C.: Polynomial vector fields with prescribed algebraic limit cycles. Geom. Dedicata. 88, 255–258 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Sc. Daniel Stahl and Dipl.- Ing. Marco Reit for their support with respect to Mathematica and LaTeX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Mathis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Mathis, R., Mathis, W. (2018). On the Construction of Dissipative Polynomial Nambu Systems with Limit Cycles. In: Kyamakya, K., Mathis, W., Stoop, R., Chedjou, J., Li, Z. (eds) Recent Advances in Nonlinear Dynamics and Synchronization. Studies in Systems, Decision and Control, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-319-58996-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58996-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58995-4

  • Online ISBN: 978-3-319-58996-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics