Skip to main content

An Introduction to Algebras of Chiral Differential Operators

  • Chapter
  • First Online:
Perspectives in Lie Theory

Part of the book series: Springer INdAM Series ((SINDAMS,volume 19))

  • 1319 Accesses

Abstract

These notes are an informal introduction to algebras of chiral differential operators. The language used is one of vertex algebras, otherwise the approach chosen is that suggested by Beilinson and Drinfeld. The prerequisites are kept to a minimum, and we even give an informal introduction to the Beilinson-Bernstein localization theory in the example of the projective line.

Partially supported by an NSF grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    This short-cut was suggested by V. Kac, who was in class.

  2. 2.

    Pull-back w.r.t. the adjunction A → J ∞ A.

  3. 3.

    In the formulas to follow, the summation w.r.t. the repeated indices is assumed.

  4. 4.

    The reader will find more information on chiral Hamiltonian reduction in lectures by T. Arakawa in this volume.

References

  1. T. Arakawa, F. Malikov, A chiral Borel-Weil-Bott theorem. Adv. Math. 229(5), 2908–2949 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Arkhipov, D. Gaitsgory, Differential operators on the loop group via chiral algebras. Int. Math. Res. Not. 2002(4), 165–210 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. R.E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster. Proc. Natl. Acad. Sci. 83(10), 3068–3071 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Borisov, Vertex algebras and mirror symmetry. Commun. Math. Phys. 215(3), 517–557 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Beilinson, J. Bernstein, Localisation de \(\mathfrak{g}\)-modules. CR Acad. Sci. Paris Se’r. I Math. 292(1), 15–18 (1981 in French)

    Google Scholar 

  6. A. Beilinson, J. Bernstein, A proof of Jantzen conjectures, in I.M. Gelfand Seminar, Advances in Soviet Mathematics, Part 1, vol. 16 (American Mathematical Society, Providence, RI, 1993), pp. 1–50

    Google Scholar 

  7. A. Beilinson, V. Drinfeld, Chiral Algebras. American Mathematical Society Colloquium Publications, vol. 51 (American Mathematical Society, Providence, RI, 2004), vi+375 pp., ISBN: 0-8218-3528-9

    Google Scholar 

  8. L. Borisov, A. Libgober, Elliptic genera of toric varieties and applications to mirror symmetry. Inv. Math. 140(2), 453–485 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Costello, A geometric construction of the Witten genus, I, in Proceedings of the International Congress of Mathematicians, vol. II (Hindustan Book Agency, New Delhi, 2010), pp. 942–959

    Google Scholar 

  10. B. Feigin, Semi-infinite homology of Lie, Kac-Moody and Virasoro algebras. Uspekhi Mat. Nauk 39(2), 155–156 (1984 in Russian)

    Google Scholar 

  11. E. Frenkel, D. Ben-Zvi, in Vertex Algebras and Algebraic Curves, 2nd edn. Mathematical Surveys and Monographs, vol. 88 (American Mathematical Society, Providence, RI, 2004)

    Google Scholar 

  12. B. Feigin, E. Frenkel, Representations of affine Kac-Moody algebras and bosonization, in V. Knizhnik Memorial Volume, ed. by L. Brink, D. Friedan, A.M. Polyakov, (World Scientific, Singapore, 1990), pp. 271–316

    Chapter  Google Scholar 

  13. E. Frenkel, D. Gaitsgory, Localization of \(\mathfrak{g}\)-modules on the affine Grassmannian, Ann. Math. 170(3), 1339–1381 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. I. Frenkel, Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66(1), 123–168 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. V. Gorbounov, F. Malikov, V. Schechtman, Gerbes of chiral differential operators over homogeneous spaces. Int. J. Math. Math. Sci. 26(2) 83–106 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Gorbounov, F. Malikov, V. Schechtman, Gerbes of chiral differential operators. III. The orbit method in geometry and physics (Marseille, 2000), Progress in Mathematics, vol. 213 (Birkhäuser Boston, Boston, MA, 2003), pp. 73–100

    Google Scholar 

  17. V. Gorbounov, F. Malikov, V. Schechtman, Gerbes of chiral differential operators. II. Vertex algebroids. Invent. Math. 155(3), 605–680 (2004)

    Article  MATH  Google Scholar 

  18. J. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category . Graduate Studies in Mathematics, vol. 94 (American Mathematical Society, Providence, RI, 2008)

    Google Scholar 

  19. V. Kac, Vertex Algebras for Beginners. University Lecture Series, vol. 10 (American Mathematical Society, Providence, RI, 1997). viii+141 pp., ISBN: 0-8218-0643-2

    Google Scholar 

  20. M. Kapranov, E. Vasserot, Vertex algebras and the formal loop space. Publ. Math. Inst. Hautes Études Sci. 100, 209–269 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Kapranov, E. Vasserot, Formal loops. II. A local Riemann-Roch theorem for determinantal gerbes. Ann. Sci. École Norm. Sup. (4) 40(1), 113–133 (2007)

    Google Scholar 

  22. A. Kapustin, Chiral de Rham complex and the half-twisted sigma-model, preprint, hep-th/0504074

    Google Scholar 

  23. B. Kostant, Lie group representations on polynomial rings. Am. J. Math. 85(3), 327–404 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Malikov, Verma modules over rk2 Kac-Moody algebras. Algebra i analiz n. 2 2, 65–84 (1990). English translation: Leningrad Math. J. 2, 269–286 (1991)

    Google Scholar 

  25. F. Malikov, V. Schechtman, A. Vaintrob, Chiral de Rham complex. Commun. Math. Phys. 204 (1999), 439–473

    Article  MathSciNet  MATH  Google Scholar 

  26. N. Nekrasov, Lectures on curved beta-gamma systems, pure spinors, and anomalies, preprint, arXiv:hep-th/0511008

    Google Scholar 

  27. M. Wakimoto, Fock repesentations of affine Lie algebra A 1 (1). Commun. Math. Phys. 104 (1986), 605–609

    Article  MATH  Google Scholar 

  28. E. Witten, Two-dimensional models with (0,2) supersymmetry: perturbative aspects. Adv. Theor. Math. Phys. 11(1), 1–63 (2007), hep-th/0504078

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fyodor Malikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malikov, F. (2017). An Introduction to Algebras of Chiral Differential Operators. In: Callegaro, F., Carnovale, G., Caselli, F., De Concini, C., De Sole, A. (eds) Perspectives in Lie Theory. Springer INdAM Series, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-58971-8_2

Download citation

Publish with us

Policies and ethics