Skip to main content

Improved Graph Edit Distance Approximation with Simulated Annealing

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10310))

Abstract

The present paper is concerned with graph edit distance, which is widely accepted as one of the most flexible graph dissimilarity measures available. A recent algorithmic framework for approximating the graph edit distance overcomes the major drawback of this distance model, viz. its exponential time complexity. Yet, this particular approximation suffers from an overestimation of the true edit distance in general. Overall aim of the present paper is to improve the distance quality of this approximation by means of a post-processing search procedure. The employed search procedure is based on the idea of simulated annealing, which turns out to be particularly suitable for complex optimization problems. In an experimental evaluation on several graph data sets the benefit of this extension is empirically confirmed.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    A similar notation is used for edges.

  2. 2.

    Edit operations of the form \((\varepsilon \rightarrow \varepsilon )\) can be dismissed, of course.

  3. 3.

    www.iam.unibe.ch/fki/databases/iam-graph-database.

  4. 4.

    On the other data sets very similar plots can be observed.

References

  1. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. J. Pattern Recognit. Artif. Intell. 18(3), 265–298 (2004)

    Article  Google Scholar 

  2. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern recognition in the last 10 years. Int. J. Pattern Recognit. Artif. Intell. 28(1), 1450001 (2014)

    Article  MathSciNet  Google Scholar 

  3. Gaüzère, B., Brun, L., Villemin, D.: Two new graphs kernels in chemoinformatics. Pattern Recognit. Lett. 33(15), 2038–2047 (2012)

    Article  MATH  Google Scholar 

  4. Kinable, J., Kostakis, O.: Malware classification based on call graph clustering. J. Comput. Virol. 7(4), 233–245 (2011)

    Article  Google Scholar 

  5. Dickinson, P.J., Bunke, H., Dadej, A., Kraetzl, M.: Matching graphs with unique node labels. Pattern Anal. Appl. 7(3), 243–254 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wilson, R.C., Hancock, E.R., Luo, B.: Pattern vectors from algebraic graph theory. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1112–1124 (2005)

    Article  Google Scholar 

  7. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognit. Lett. 1, 245–253 (1983)

    Article  MATH  Google Scholar 

  8. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(4), 950–959 (2009)

    Article  Google Scholar 

  9. Riesen, K., Bunke, H.: Improving bipartite graph edit distance approximation using various search strategies. Pattern Recognit. 48(4), 1349–1363 (2015)

    Article  MATH  Google Scholar 

  10. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087 (1953)

    Article  MATH  Google Scholar 

  11. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 4598, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Riesen, K.: Structural Pattern Recognition with Graph Edit Distance: Approximation Algorithms and Applications. Advances in Computer Vision and Pattern Recognition. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  13. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    Book  MATH  Google Scholar 

  14. Riesen, K., Fischer, A., Bunke, H.: Estimating graph edit distance using lower and upper bounds of bipartite approximations. Int. J. Pattern Recognit. Artif. Intell. 29(2), 1550011 (2015)

    Article  MathSciNet  Google Scholar 

  15. Riesen, K., Ferrer, M., Dornberger, R., Bunke, H.: Greedy graph edit distance. In: Perner, P. (ed.) MLDM 2015. LNCS, vol. 9166, pp. 3–16. Springer, Cham (2015). doi:10.1007/978-3-319-21024-7_1

    Chapter  Google Scholar 

  16. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) Structural, Syntactic, and Statistical Pattern Recognition. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Hasler Foundation Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaspar Riesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Riesen, K., Fischer, A., Bunke, H. (2017). Improved Graph Edit Distance Approximation with Simulated Annealing. In: Foggia, P., Liu, CL., Vento, M. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2017. Lecture Notes in Computer Science(), vol 10310. Springer, Cham. https://doi.org/10.1007/978-3-319-58961-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58961-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58960-2

  • Online ISBN: 978-3-319-58961-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics