Skip to main content

Pathophysiology of Bone Fragility

  • Chapter
  • First Online:
Principles of Bone and Joint Research

Abstract

Fragility fractures are defined as fractures that occur as a result of a minimal trauma, such as a fall from standing height or less, or in the absence of an obvious trauma. When getting older, the probability to sustain a fragility fracture increases. This age-related increase is even more pronounced in women due to the sudden drop in sex steroid secretion during menopausal transition. In the first part of this chapter, you will learn how different bone-related properties including bone mass, bone microarchitecture and macroarchitecture, bone material properties, and bone metabolism contribute to bone fragility. The most prominent and most frequent disease associated with bone fragility is osteoporosis. However, also patients with various other diseases including Paget’s disease, primary hyperparathyroidism, rickets, osteomalacia, and chronic kidney disease-mineral bone disorder (CKD-MBD) do have an increased risk to sustain fragility fractures. In the second and third part of this chapter, you will learn about the pathophysiological mechanisms leading to bone fragility in these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnell O, Kanis J. Epidemiology of osteoporotic fractures. Osteoporos Int. 2005;16(Suppl 2):TaS3–7.

    Article  Google Scholar 

  2. Boutroy S, Hans D, Sornay-Rendu E, Vilayphiou N, Winzenrieth R, Chapurlat R. Trabecular bone score improves fracture risk prediction in non-osteoporotic women: the OFELY study. Osteoporos Int. 2013;24(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  3. Keaveny TM, Kopperdahl DL, Melton LJ 3rd, Hoffmann PF, Amin S, Riggs BL, et al. Age-dependence of femoral strength in white women and men. J Bone Miner Res. 2010;25(5):994–1001.

    PubMed  Google Scholar 

  4. Jacques RM, Boonen S, Cosman F, Reid IR, Bauer DC, Black DM, Eastell R. Relationship of changes in total hip bone mineral density to vertebral and nonvertebral fracture risk in women with postmenopausal osteoporosis treated with once-yearly zoledronic acid 5 mg: the HORIZON-pivotal fracture trial (PFT). J Bone Miner Res. 2012;27(8):1627–34.

    Article  CAS  PubMed  Google Scholar 

  5. Fonseca H, Moreira-Goncalves D, Coriolano HJA, et al. Bone quality: the determinants of bone strength and fragility. Sports Med. 2013;44(1):37–53.

    Article  Google Scholar 

  6. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19(4):385–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Seeman E. Pathogenesis of bone fragility in women and men. Lancet. 2002;359(9320):1841–50.

    Article  PubMed  Google Scholar 

  8. Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK. Bone loss and bone size after menopause. N Engl J Med. 2003;349(4):327–34.

    Article  PubMed  Google Scholar 

  9. Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone. 1993;14(4):595–608.

    Article  CAS  PubMed  Google Scholar 

  10. Kersh ME, Pandy MG, Bui QM, Jones AC, Arns CH, Knackstedt MA, et al. The heterogeneity in femoral neck structure and strength. J Bone Miner Res. 2013;28(5):1022–8.

    Article  PubMed  Google Scholar 

  11. Faulkner KG, Cummings SR, Black D, Palermo L, Gluer CC, Genant HK. Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res. 1993;8(10):1211–7.

    Article  CAS  PubMed  Google Scholar 

  12. Gnudi S, Sitta E, Pignotti E. Prediction of incident hip fracture by femoral neck bone mineral density and neck-shaft angle: a 5-year longitudinal study in post-menopausal females. Br J Radiol. 2012;85(1016):e467–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khosla S, Riggs BL, Atkinson EJ, Oberg AL, McDaniel LJ, Holets M, et al. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res. 2006;21(1):124–31.

    Google Scholar 

  14. Legrand E, Chappard D, Pascaretti C, Duquenne M, Krebs S, Rohmer V, et al. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res. 2000;15(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  15. Milovanovic P, Djonic D, Marshall RP, Hahn M, Nikolic S, Zivkovic V, et al. Micro-structural basis for particular vulnerability of the superolateral neck trabecular bone in the postmenopausal women with hip fractures. Bone. 2012;50(1):63–8.

    Article  PubMed  Google Scholar 

  16. Pialat JB, Vilayphiou N, Boutroy S, Gouttenoire PJ, Sornay-Rendu E, Chapurlat R, et al. Local topological analysis at the distal radius by HR-pQCT: application to in vivo bone microarchitecture and fracture assessment in the OFELY study. Bone. 2012;51(3):362–8.

    Google Scholar 

  17. Seeman E. Age- and menopause-related bone loss compromise cortical and trabecular microstructure. J Gerontol A Biol Sci Med Sci. 2013;68(10):1218–25.

    Article  PubMed  Google Scholar 

  18. Cooper DM, Thomas CD, Clement JG, Turinsky AL, Sensen CW, Hallgrimsson B. Age-dependent change in the 3D structure of cortical porosity at the human femoral midshaft. Bone. 2007;40(4):957–65.

    Article  PubMed  Google Scholar 

  19. Bernhard A, Milovanovic P, Zimmermann EA, Hahn M, Djonic D, Krause M, et al. Micro-morphological properties of osteons reveal changes in cortical bone stability during aging, osteoporosis, and bisphosphonate treatment in women. Osteoporos Int. 2013;24(10):2671–80.

    Article  CAS  PubMed  Google Scholar 

  20. Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet. 2010;375(9727):1729–36.

    Article  PubMed  Google Scholar 

  21. Nicks KM, Amin S, Atkinson EJ, Riggs BL, Melton LJ 3rd, Khosla S. Relationship of age to bone microstructure independent of areal bone mineral density. J Bone Miner Res. 2012;27(3):637–44.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bala Y, Zebaze R, Ghasem-Zadeh A, Atkinson EJ, Iuliano S, Peterson JM, et al. Cortical porosity identifies women with osteopenia at increased risk for forearm fractures. J Bone Miner Res. 2014;29(6):1356–62.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Arlot ME, Burt-Pichat B, Roux JP, Vashishth D, Bouxsein ML, Delmas PD. Microarchitecture influences microdamage accumulation in human vertebral trabecular bone. J Bone Miner Res. 2008;23(10):1613–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Waldorff EI, Goldstein SA, McCreadie BR. Age-dependent microdamage removal following mechanically induced microdamage in trabecular bone in vivo. Bone. 2007;40(2):425–32.

    Google Scholar 

  25. Graeff C, Timm W, Nickelsen TN, Farrerons J, Marin F, Barker C, et al. Monitoring teriparatide-associated changes in vertebral microstructure by high-resolution CT in vivo: results from the EUROFORS study. J Bone Miner Res. 2007;22(9):1426–33.

    Google Scholar 

  26. Boivin G, Vedi S, Purdie DW, Compston JE, Meunier PJ. Influence of estrogen therapy at conventional and high doses on the degree of mineralization of iliac bone tissue: a quantitative microradiographic analysis in postmenopausal women. Bone. 2005;36(3):562–7.

    Article  CAS  PubMed  Google Scholar 

  27. Martin RB, Ishida J. The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength. J Biomech. 1989;22(5):419–26.

    Article  CAS  PubMed  Google Scholar 

  28. Oxlund H, Barckman M, Ortoft G, Andreassen TT. Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone. 1995;17(4 Suppl):365S–71S.

    CAS  PubMed  Google Scholar 

  29. Viguet-Carrin S, Follet H, Gineyts E, Roux JP, Munoz F, Chapurlat R, et al. Association between collagen cross-links and trabecular microarchitecture properties of human vertebral bone. Bone. 2010;46(2):342–7.

    Article  CAS  PubMed  Google Scholar 

  30. Seeman E, Delmas PD. Bone quality--the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61.

    Article  CAS  PubMed  Google Scholar 

  31. Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377(9773):1276–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Report of a WHO Study Group. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organ Tech Rep Ser. 1994;843:1–129.

    Google Scholar 

  33. Lindsay R, Cosman F. Osteoporosis. In: Longo DL, Kasper DL, Jameson JL, Fauci AS, Hauser SL, Loscalzo J, editors. Harrison’s principles of internal medicine. New York: Mc Graw Hill; 2012.

    Google Scholar 

  34. Painter SE, Kleerekoper M, Camacho PM. Secondary osteoporosis: a review of the recent evidence. Endocr Pract. 2006;12(4):436–45.

    Article  PubMed  Google Scholar 

  35. Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest. 2005;115(12):3318–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hattner R, Epker BN, Frost HM. Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature. 1965;206(983):489–90.

    Article  CAS  PubMed  Google Scholar 

  37. Leibbrandt A, Penninger JM. RANK/RANKL: regulators of immune responses and bone physiology. Ann N Y Acad Sci. 2008;1143:123–50.

    Article  CAS  PubMed  Google Scholar 

  38. Garnero P, Sornay-Rendu E, Chapuy MC, Delmas PD. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res. 1996;11(3):337–49.

    Article  CAS  PubMed  Google Scholar 

  39. Riggs BL, Khosla S, Melton LJ 3rd. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002;23(3):279–302.

    Google Scholar 

  40. Sipos W, Pietschmann P, Rauner M, Kerschan-Schindl K, Patsch J. Pathophysiology of osteoporosis. Wien Med Wochenschr. 2009;159(9–10):230–4.

    Article  PubMed  Google Scholar 

  41. Pacifici R. Estrogen deficiency, T cells and bone loss. Cell Immunol. 2008;252(1–2):68–80.

    Article  CAS  PubMed  Google Scholar 

  42. Pietschmann P, Rauner M, Sipos W, Kerschan-Schindl K. Osteoporosis: an age-related and gender-specific disease--a mini-review. Gerontology. 2009;55(1):3–12.

    Article  PubMed  Google Scholar 

  43. Rauner M, Sipos W, Thiele S, Pietschmann P. Advances in osteoimmunology: pathophysiologic concepts and treatment opportunities. Int Arch Allergy Immunol. 2013;160(2):114–25.

    Article  CAS  PubMed  Google Scholar 

  44. Pacifici R. Mechanism of estrogen action in bone. In: Bilezikian JP, Raisz LG, Martin JT, editors. Principles of bone biology. Third ed. New York: Academic Press; 2008. p. 921–33.

    Chapter  Google Scholar 

  45. Clarke BL, Khosla S. Physiology of bone loss. Radiol Clin N Am. 2010;48(3):483–95.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.

    Article  CAS  PubMed  Google Scholar 

  47. Pietschmann P, Mechtcheriakova D, Meshcheryakova A, Föger-Samwald U, Ellinger I. Immunology of osteoporosis: a mini-review. Gerontology. 2016;62(2):128–37.

    Article  CAS  PubMed  Google Scholar 

  48. Duque G, Troen BR. Understanding the mechanisms of senile osteoporosis: new facts for a major geriatric syndrome. J Am Geriatr Soc. 2008;56(5):935–41.

    Article  PubMed  Google Scholar 

  49. Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31(3):266–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Föger-Samwald U, Vekszler G, Hörz-Schuch E, Salem S, Wipperich M, Ritschl P, Mousavi M, Pietschmann P. Molecular mechanisms of osteoporotic hip fractures in elderly women. Exp Gerontol. 2016;73:49–58.

    Article  PubMed  Google Scholar 

  51. Kanis JA. Pathophysiology and treatment of Paget’s disease of bone. London: Martin Dunitz; 1992.

    Google Scholar 

  52. Ralston SH, Layfield R. Pathogenesis of Paget disease of bone. Calcif Tissue Int. 2012;91(2):97–113.

    Article  CAS  PubMed  Google Scholar 

  53. Siris ES, Roodman GD. Paget’s disease of bone. In: Rosen CJ, Bouillon R, Compston JE, Rosen V, editors. Primer on the metabolic bone diseases and disorders of mineral metabolism. Oxford: Wiley-Blackwell; 2013. p. 659–68.

    Chapter  Google Scholar 

  54. Favus MJ, Vokes TJ. Paget’s disease and other dysplasias of bone. In: Longo DL, Kasper DL, Jameson JL, Fauci AS, Hauser SL, Loscalzo J, editors. Harrison’s principles of internal medicine. New York: Mc Graw Hill; 2012. p. 3136–44.

    Google Scholar 

  55. Poor G, Donath J, Fornet B, Cooper C. Epidemiology of Paget’s disease in Europe: the prevalence is decreasing. J Bone Miner Res. 2006;21(10):1545–9.

    Article  PubMed  Google Scholar 

  56. Nebot Valenzuela E, Pietschmann P. Epidemiology and pathology of Paget’s disease of bone – a review. Wien Med Wochenschr. 2017;167:2–8.

    Google Scholar 

  57. Helfrich MH, Hobson RP, Grabowski PS, Zurbriggen A, Cosby SL, Dickson GR, et al. A negative search for a paramyxoviral etiology of Paget’s disease of bone: molecular, immunological, and ultrastructural studies in UK patients. J Bone Miner Res. 2000;15(12):2315–29.

    Article  CAS  PubMed  Google Scholar 

  58. Seitz S, Priemel M, Zustin J, Beil FT, Semler J, Minne H, et al. Paget’s disease of bone: histologic analysis of 754 patients. J Bone Miner Res. 2009;24(1):62–9.

    Article  PubMed  Google Scholar 

  59. Altman RD. Paget’s disease of bone. In: Coe FL, Favus MJ, editors. Disorders of bone and mineral metabolism. New York: Raven press; 1992. p. 1027–64.

    Google Scholar 

  60. Potts JT, Jüpper H. Disorders of the parathyroid gland and calcium homeostasis. In: Longo DL, Kasper DL, Jameson JL, Fauci AS, Hauser SL, Loscalzo J, editors. Harrison’s principles of internal medicine. New York: Mc Graw Hill; 2012. p. 3096–120.

    Google Scholar 

  61. Silverberg SJ. Primary hyperparathyroidism. In: Rosen CJ, Bouillon R, Compston JE, Rosen V, editors. Primer on the metabolic bone diseases and disorders of mineral metabolism. Oxford: Wiley-Blackwell; 2013. p. 543–52.

    Chapter  Google Scholar 

  62. Nissenson RA, Jüpper H. Parathyroid hormone. In: Rosen CJ, Bouillon R, Compston J, Rosen V, editors. Primer on the metabolic bone diseases and disorders of mineral metabolism. Oxford: Wiley-Blackwell; 2013. p. 208–14.

    Chapter  Google Scholar 

  63. Kerschan-Schindl K, Riss P, Krestan C, Rauner M, Bieglmayer C, Gleiss A, et al. Bone metabolism in patients with primary hyperparathyroidism before and after surgery. Horm Metab Res. 2012;44(6):476–81.

    Article  CAS  PubMed  Google Scholar 

  64. Lewiecki EM, Miller PD. Skeletal effects of primary hyperparathyroidism: bone mineral density and fracture risk. J Clin Densitom. 2013;16(1):28–32.

    Article  PubMed  Google Scholar 

  65. Stein EM, Silva BC, Boutroy S, Zhou B, Wang J, Udesky J, et al. Primary hyperparathyroidism is associated with abnormal cortical and trabecular microstructure and reduced bone stiffness in postmenopausal women. J Bone Miner Res. 2013;28(5):1029–40.

    Article  PubMed  PubMed Central  Google Scholar 

  66. De Geronimo S, Romagnoli E, Diacinti D, D’Erasmo E, Minisola S. The risk of fractures in postmenopausal women with primary hyperparathyroidism. Eur J Endocrinol. 2006;155(3):415–20.

    Article  PubMed  Google Scholar 

  67. Bandeira L, Bilezikian J. Primary hyperparathyroidism. J Oral Pathol Med. 2015;44(4):239–43.

    Article  Google Scholar 

  68. Bringhurst FR, Demay MB, Krane SM, Kronenberg HM. Bone and mineral metabolism in health and disease. In: Longo DL, Kasper DL, Jameson JL, Fauci AS, Hauser SL, Loscalzo J, editors. Harrison’s principles of internal medicine. New York: Mc Graw Hill; 2012.

    Google Scholar 

  69. Wharton B, Bishop N. Rickets. Lancet. 2003;362(9393):1389–400.

    Article  CAS  PubMed  Google Scholar 

  70. LeBoff MS. Metabolic bone disease. In: Kelley WN, Harris ED, Ruddy S, Sledge CB, editors. Textbook of rheumatology. Philadelphia: W.B. Saunders Company; 1997. 1563–80.

    Google Scholar 

  71. Reddy Munagala VV, Tomar V. Images in clinical medicine. Osteomalacia N Engl J Med. 2014;370(6):e10.

    Article  PubMed  Google Scholar 

  72. de Menezes FH, de Castro LC, Damiani D. Hypophosphatemic rickets and osteomalacia. Arq Bras Endocrinol Metabol. 2006;50(4):802–13.

    Article  Google Scholar 

  73. Ruppe MD, Jan de Beur SM. Disorders of phosphate homeostasis. In: Rosen CJ, Bouillon R, Compston J, Rosen V, editors. Primer on the metabolic bone diseases and disorders of mineral metabolism. Oxford: Wiley-Blackwell; 2013. p. 632–9.

    Google Scholar 

  74. Raubenheimer EJ, Noffke CE, Hendrik HD. Chronic kidney disease-mineral bone disorder: an update on the pathology and cranial manifestations. J Oral Pathol Med. 2015;44(4):239–43.

    Article  PubMed  Google Scholar 

  75. Hruska K, Seifert M. Pathophysiology of chronic kidney disease mineral bone disorder (CKD-MBD). In: Rosen CJ, Bouillon R, Compston J, Rosen V, editors. Primer on the metabolic bone diseases and disorders of mineral metabolism. Oxford: Wiley-Blackwell; 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Pietschmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kerschan-Schindl, K., Föger-Samwald, U., Pietschmann, P. (2017). Pathophysiology of Bone Fragility. In: Pietschmann, P. (eds) Principles of Bone and Joint Research. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-58955-8_6

Download citation

Publish with us

Policies and ethics