Part of the Computational Biology book series (COBO, volume 25)


As high throughput, crystallization screening and analysis systems automate the processes starting from setting up plates to scoring , this enables conducting thousands of experiments in a short time. Analysis of crystallization trial experiments in the past has been cumbersome due to the physical environment where an expert needs to look crystallization trial images one by one using a microscope with the likelihood of the majority of experiments yielding unsuccessful outcomes. The visualization of crystallization experiments on a display with some highlighted information along with annotation capability can provide experts a user-friendly and shared environment of collaborative analysis. In this chapter, we summarize the methods and information displayed on various visualization software for protein crystallization analysis.


  1. 1.
    Bard, J., Ercolani, K., Svenson, K., Olland, A., & Somers, W. (2004). Automated systems for protein crystallization. Methods, 34(3), 329–347.CrossRefGoogle Scholar
  2. 2.
    Berry, I. M., Dym, O., Esnouf, R. M., Harlos, K., Meged, R., Perrakis, A., et al. (2006). SPINE high-throughput crystallization, crystal imaging and recognition techniques: current state, performance analysis, new technologies and future aspects. Acta Crystallographica Section D: Biological Crystallography, 62(10), 1137–1149.CrossRefGoogle Scholar
  3. 3.
    Coudray, N., Hermann, G., Caujolle-Bert, D., Karathanou, A., Erne-Brand, F., Buessler, J.-L., et al. (2011). Automated screening of 2d crystallization trials using transmission electron microscopy: A high-throughput tool-chain for sample preparation and microscopic analysis. Journal of Structural Biology, 173(2), 365–374.CrossRefGoogle Scholar
  4. 4.
    Daniel, E., Lin, B., Diprose, J. M., Griffiths, S. L., Morris, C., Berry, I. M., et al. (2011). xtalPiMS: A PiMS-based web application for the management and monitoring of crystallization trials. Journal of Structural Biology, 175(2), 230–235.CrossRefGoogle Scholar
  5. 5.
    Dinc, I. (2016). Associative Data Analytics and Its Application to Protein Crystallization Analysis. Ph.D. thesis, University of Alabama in Huntsville.Google Scholar
  6. 6.
    Dinc, I., Pusey, M. L., & Aygun, R. S. (2016). Visual-X2: Scoring and Symbolic Visualization Tool for Analysis of Protein Crystallization Trial Images (Poster). In Visual-X2: Scoring and Symbolic Visualization Tool for Analysis of Protein Crystallization Trial Images (Poster) Huntsville, AL.Google Scholar
  7. 7.
    Hiraki, M., Kato, R., Nagai, M., Satoh, T., Hirano, S., Ihara, K., et al. (2006). Development of an automated large-scale protein-crystallization and monitoring system for high-throughput protein-structure analyses. Acta Crystallographica Section D: Biological Crystallography, 62(9), 1058–1065.CrossRefGoogle Scholar
  8. 8.
    Hu, M., vink, M., Kim, C., Derr, K., Koss, J., DAmico, K., et al. (2010). Automated electron microscopy for evaluating two-dimensional crystallization of membrane proteins. Journal of Structural Biology, 171(1), 102–110.CrossRefGoogle Scholar
  9. 9.
    Luft, J. R., Collins, R. J., Fehrman, N. A., Lauricella, A. M., Veatch, C. K., & DeTitta, G. T. (2003). A deliberate approach to screening for initial crystallization conditions of biological macromolecules. Journal of Structural Biology, 142(1), 170–179.CrossRefGoogle Scholar
  10. 10.
    Luft, J. R., Wolfley, J. R., & Snell, E. H. (2011). Whats in a drop? correlating observations and outcomes to guide macromolecular crystallization experiments. Crystal Growth and Design, 11(3), 651–663.CrossRefGoogle Scholar
  11. 11.
    Mayo, C. J., Diprose, J. M., Walter, T. S., Berry, I. M., Wilson, J., Owens, R. J., et al. (2005). Benefits of automated crystallization plate tracking, imaging, and analysis. Structure, 13(2), 175–182.CrossRefGoogle Scholar
  12. 12.
    Nagel, R. M., Luft, J. R., & Snell, E. H. (2008). AutoSherlock: a program for effective crystallization data analysis. Journal of Applied Crystallography, 41(6), 1173–1176.CrossRefGoogle Scholar
  13. 13.
    Snell, E. H., Nagel, R. M., Wojtaszcyk, A., ONeill, H., Wolfley, J. L., & Luft, J. R. (2008). The application and use of chemical space mapping to interpret crystallization screening results. Acta Crystallographica Section D: Biological Crystallography, 64(Pt 12), 1240–1249.CrossRefGoogle Scholar
  14. 14.
    Walter, T. S., Diprose, J. M., Mayo, C. J., Siebold, C., Pickford, M. G., Carter, L., et al. (2005). A procedure for setting up high-throughput nanolitre crystallization experiments. Crystallization workflow for initial screening, automated storage, imaging and optimization. Acta Crystallographica Section D: Biological Crystallography, 61(6), 651–657.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.iXpressGenes, Inc.HuntsvilleUSA
  2. 2.University of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations