Focal Stacking for Crystallization Microscopy

Part of the Computational Biology book series (COBO, volume 25)


Automated image analysis of protein crystallization images is one of the important research areas. For proper analysis of the microscopic images, it is necessary to have all objects in good focus. If objects in a scene (or specimen) appear at different depths with respect to the camera’s focal point, objects outside the depth of field usually appear blurred. Therefore, scientists capture a collection of images with different depths of field. Each of these images can have different objects in focus. Focal stacking is a technique of creating a single focused image from a stack of images collected with different depths of field. In this chapter, we analyze focal stacking techniques suitable for trace fluorescently labeled protein crystallization images but also applicable images captured under white light.



\(\copyright \)2016 IEEE. Reprinted, with permission, from M. S. Sigdel, M. Sigdel, S. Dinç, I. Dinc, M. L. Pusey and R. S. Aygün, “FocusALL: Focal Stacking of Microscopic Images Using Modified Harris Corner Response Measure,” in IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 13, no. 2, pp. 326–340, March-April 1 2016. doi:


  1. 1.
    Bezzubik, V., Ustinov, S., & Belashenkov, N. (2009). Optimization of algorithms for autofocusing a digital microscope. Journal of Optical Technology, 76(10), 603–608.CrossRefGoogle Scholar
  2. 2.
    Forero, M., Sroubek, F., & Cristóbal, G. (2004). Identification of tuberculosis bacteria based on shape and color. Real-time imaging, 10(4), 251–262.CrossRefGoogle Scholar
  3. 3.
    Forster, B., Van De Ville, D., Berent, J., Sage, D., & Unser, M. (2004). Complex wavelets for extended depth-of-field: A new method for the fusion of multichannel microscopy images. Microscopy Research and technique, 65(1–2), 33–42.CrossRefGoogle Scholar
  4. 4.
    Goldsmith, N. (2000). Deep focus; a digital image processing technique to produce improved focal depth in light microscopy. Image Anal Stereol, 19, 163–167.CrossRefGoogle Scholar
  5. 5.
    Harris, C., & Stephens, M. A. (1988). combined corner and edge detector. In Alvey vision conference (vol. 15, p. 50). Manchester: UK,Google Scholar
  6. 6.
    Hartigan, J., & Wong, M. (1979). Algorithm as 136: A k-means clustering algorithm. Applied statistics, 100–108.Google Scholar
  7. 7.
    Hill, P., Canagarajah, C., & Bull, D. (2002). Image fusion using complex wavelets. In BMVC (pp. 1–10) Citeseer.Google Scholar
  8. 8.
    Junior, A., Costa, M., Costa F., C. F., Fujimoto, L., & Salem, J. (2010). Evaluation of autofocus functions of conventional sputum smear microscopy for tuberculosis [c]. In IEEE International Conference on Engineering in Medicine and Biology Society (EMBS) (pp. 3041–3044).Google Scholar
  9. 9.
    Lewis, J. (2007). O Callaghan, R., Nikolov, S., Bull, D., and Canagarajah, N. Pixel-and region-based image fusion with complex wavelets. Information fusion, 8(2), 119–130.CrossRefGoogle Scholar
  10. 10.
    Li, S., & Yang, B. (2008). Multifocus image fusion by combining curvelet and wavelet transform. Pattern Recognition Letters, 29(9), 1295–1301.CrossRefGoogle Scholar
  11. 11.
    Li, S., Yang, B., & Hu, J. (2011). Performance comparison of different multi-resolution transforms for image fusion. Information Fusion, 12(2), 74–84.CrossRefGoogle Scholar
  12. 12.
    Liu, X., Wang, W., & Sun, Y. (2007). Dynamic evaluation of autofocusing for automated microscopic analysis of blood smear and pap smear. Journal of microscopy, 227(1), 15–23.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mateos-Pérez, J., et al. (2012). Comparative evaluation of autofocus algorithms for a real-time system for automatic detection of mycobacterium tuberculosis. Cytometry Part A, 81(3), 213–221.CrossRefGoogle Scholar
  14. 14.
    Moravec, H. (1980). Obstacle avoidance and navigation in the real world by a seeing robot rover. DTIC Document: Tech. rep.Google Scholar
  15. 15.
    Osibote, O., Dendere, R., Krishnan, S., & Douglas, T. (2010). Automated focusing in bright-field microscopy for tuberculosis detection. Journal of microscopy, 240(2), 155–163.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Redondo, R., et al. (2012). Autofocus evaluation for brightfield microscopy pathology. Journal of biomedical optics, 17(3), 0360081–0360088.CrossRefGoogle Scholar
  17. 17.
    Shi, W., Zhu, C., Tian, Y., & Nichol, J. (2005). Wavelet-based image fusion and quality assessment. International Journal of Applied Earth Observation and Geoinformation, 6(3), 241–251.CrossRefGoogle Scholar
  18. 18.
    Sigdel, M., Pusey, M., & Aygün, R. (2013). Real-time protein crystallization image acquisition and classification system. Crystal growth & design, 13(7), 2728–2736.CrossRefGoogle Scholar
  19. 19.
    Sigdel, M. S., Sigdel, M., Din, S., Dinc, I., Pusey, M. L., & Aygn, R. S. (2016). Focusall: Focal stacking of microscopic images using modified harris corner response measure. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 13(2), 326–340.CrossRefGoogle Scholar
  20. 20.
    Stauffer, N. (1983). Active auto focus system improvement, US Patent 4,367,027.Google Scholar
  21. 21.
    Sugimoto, A., & Ichioka, Y. (1985). Digital composition of images with increased depth of focus considering depth information. Applied optics, 24(14), 2076–2080.CrossRefGoogle Scholar
  22. 22.
    Sun, Y., Duthaler, S., & Nelson, B. (2004). Autofocusing in computer microscopy: selecting the optimal focus algorithm. Microscopy research and technique, 65(3), 139–149.CrossRefGoogle Scholar
  23. 23.
    Valdecasas, A., Marshall, D., Becerra, J., & Terrero, J. (2001). On the extended depth of focus algorithms for bright field microscopy. Micron, 32(6), 559–569.CrossRefGoogle Scholar
  24. 24.
    Vollath, D. (1988). The influence of the scene parameters and of noise on the behaviour of automatic focusing algorithms. Journal of microscopy, 151(2), 133–146.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.iXpressGenes, Inc.HuntsvilleUSA
  2. 2.University of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations