Skip to main content

Focal Stacking for Crystallization Microscopy

  • Chapter
  • First Online:
Data Analytics for Protein Crystallization

Part of the book series: Computational Biology ((COBO,volume 25))

  • 767 Accesses

Abstract

Automated image analysis of protein crystallization images is one of the important research areas. For proper analysis of the microscopic images, it is necessary to have all objects in good focus. If objects in a scene (or specimen) appear at different depths with respect to the camera’s focal point, objects outside the depth of field usually appear blurred. Therefore, scientists capture a collection of images with different depths of field. Each of these images can have different objects in focus. Focal stacking is a technique of creating a single focused image from a stack of images collected with different depths of field. In this chapter, we analyze focal stacking techniques suitable for trace fluorescently labeled protein crystallization images but also applicable images captured under white light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Images obtained from http://bigwww.epfl.ch/demo/edf/demo_5.html (Courtesy of Peter Lundh von Leithner and Heba Ahmad, Institute of Ophthalmology, London).

  2. 2.

    http://www.textureking.com/content/img/stock/big/DSC_3518.JPG.

References

  1. Bezzubik, V., Ustinov, S., & Belashenkov, N. (2009). Optimization of algorithms for autofocusing a digital microscope. Journal of Optical Technology, 76(10), 603–608.

    Article  Google Scholar 

  2. Forero, M., Sroubek, F., & Cristóbal, G. (2004). Identification of tuberculosis bacteria based on shape and color. Real-time imaging, 10(4), 251–262.

    Article  Google Scholar 

  3. Forster, B., Van De Ville, D., Berent, J., Sage, D., & Unser, M. (2004). Complex wavelets for extended depth-of-field: A new method for the fusion of multichannel microscopy images. Microscopy Research and technique, 65(1–2), 33–42.

    Article  Google Scholar 

  4. Goldsmith, N. (2000). Deep focus; a digital image processing technique to produce improved focal depth in light microscopy. Image Anal Stereol, 19, 163–167.

    Article  Google Scholar 

  5. Harris, C., & Stephens, M. A. (1988). combined corner and edge detector. In Alvey vision conference (vol. 15, p. 50). Manchester: UK,

    Google Scholar 

  6. Hartigan, J., & Wong, M. (1979). Algorithm as 136: A k-means clustering algorithm. Applied statistics, 100–108.

    Google Scholar 

  7. Hill, P., Canagarajah, C., & Bull, D. (2002). Image fusion using complex wavelets. In BMVC (pp. 1–10) Citeseer.

    Google Scholar 

  8. Junior, A., Costa, M., Costa F., C. F., Fujimoto, L., & Salem, J. (2010). Evaluation of autofocus functions of conventional sputum smear microscopy for tuberculosis [c]. In IEEE International Conference on Engineering in Medicine and Biology Society (EMBS) (pp. 3041–3044).

    Google Scholar 

  9. Lewis, J. (2007). O Callaghan, R., Nikolov, S., Bull, D., and Canagarajah, N. Pixel-and region-based image fusion with complex wavelets. Information fusion, 8(2), 119–130.

    Article  Google Scholar 

  10. Li, S., & Yang, B. (2008). Multifocus image fusion by combining curvelet and wavelet transform. Pattern Recognition Letters, 29(9), 1295–1301.

    Article  Google Scholar 

  11. Li, S., Yang, B., & Hu, J. (2011). Performance comparison of different multi-resolution transforms for image fusion. Information Fusion, 12(2), 74–84.

    Article  Google Scholar 

  12. Liu, X., Wang, W., & Sun, Y. (2007). Dynamic evaluation of autofocusing for automated microscopic analysis of blood smear and pap smear. Journal of microscopy, 227(1), 15–23.

    Article  MathSciNet  Google Scholar 

  13. Mateos-Pérez, J., et al. (2012). Comparative evaluation of autofocus algorithms for a real-time system for automatic detection of mycobacterium tuberculosis. Cytometry Part A, 81(3), 213–221.

    Article  Google Scholar 

  14. Moravec, H. (1980). Obstacle avoidance and navigation in the real world by a seeing robot rover. DTIC Document: Tech. rep.

    Google Scholar 

  15. Osibote, O., Dendere, R., Krishnan, S., & Douglas, T. (2010). Automated focusing in bright-field microscopy for tuberculosis detection. Journal of microscopy, 240(2), 155–163.

    Article  MathSciNet  Google Scholar 

  16. Redondo, R., et al. (2012). Autofocus evaluation for brightfield microscopy pathology. Journal of biomedical optics, 17(3), 0360081–0360088.

    Article  Google Scholar 

  17. Shi, W., Zhu, C., Tian, Y., & Nichol, J. (2005). Wavelet-based image fusion and quality assessment. International Journal of Applied Earth Observation and Geoinformation, 6(3), 241–251.

    Article  Google Scholar 

  18. Sigdel, M., Pusey, M., & Aygün, R. (2013). Real-time protein crystallization image acquisition and classification system. Crystal growth & design, 13(7), 2728–2736.

    Article  Google Scholar 

  19. Sigdel, M. S., Sigdel, M., Din, S., Dinc, I., Pusey, M. L., & Aygn, R. S. (2016). Focusall: Focal stacking of microscopic images using modified harris corner response measure. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 13(2), 326–340.

    Article  Google Scholar 

  20. Stauffer, N. (1983). Active auto focus system improvement, US Patent 4,367,027.

    Google Scholar 

  21. Sugimoto, A., & Ichioka, Y. (1985). Digital composition of images with increased depth of focus considering depth information. Applied optics, 24(14), 2076–2080.

    Article  Google Scholar 

  22. Sun, Y., Duthaler, S., & Nelson, B. (2004). Autofocusing in computer microscopy: selecting the optimal focus algorithm. Microscopy research and technique, 65(3), 139–149.

    Article  Google Scholar 

  23. Valdecasas, A., Marshall, D., Becerra, J., & Terrero, J. (2001). On the extended depth of focus algorithms for bright field microscopy. Micron, 32(6), 559–569.

    Article  Google Scholar 

  24. Vollath, D. (1988). The influence of the scene parameters and of noise on the behaviour of automatic focusing algorithms. Journal of microscopy, 151(2), 133–146.

    Article  Google Scholar 

Download references

Acknowledgements

\(\copyright \)2016 IEEE. Reprinted, with permission, from M. S. Sigdel, M. Sigdel, S. Dinç, I. Dinc, M. L. Pusey and R. S. Aygün, “FocusALL: Focal Stacking of Microscopic Images Using Modified Harris Corner Response Measure,” in IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 13, no. 2, pp. 326–340, March-April 1 2016. doi: https://doi.org/10.1109/TCBB.2015.2459685

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc L. Pusey .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pusey, M.L., Aygün, R.S. (2017). Focal Stacking for Crystallization Microscopy. In: Data Analytics for Protein Crystallization. Computational Biology, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-58937-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58937-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58936-7

  • Online ISBN: 978-3-319-58937-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics