Skip to main content

Computational Methods for Protein Crystallization Screening

  • Chapter
  • First Online:
Data Analytics for Protein Crystallization

Part of the book series: Computational Biology ((COBO,volume 25))

  • 789 Accesses

Abstract

The goal of protein crystallization screening is to determine the main factors of importance to crystallize a protein under investigation. The protein crystallization screening is often expanded to many hundreds or thousands of conditions to maximize combinatorial chemical space coverage for maximizing the chances of a successful (crystalline) outcome. Available commercial screens may not generate crystalline conditions for some proteins difficult to crystallize. Nevertheless, the previous crystallization trials could be analyzed to recommend screens with crystalline conditions. This chapter presents computational methods for protein crystallization screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Reprinted from Progress in Biophysics and Molecular Biology, Volume 88, Issue 3, Lawrence J. DeLucas, David Hamrick, Larry Cosenza, Lisa Nagy, Debbie McCombs, Terry Bray, Arnon Chait, Brad Stoops, Alexander Belgovskiy, W. William Wilson, Marc Parham, Nikolai Chernov, Protein crystallization: virtual screening and optimization, Pages 285–309, Copyright (2005) with permission from Elsevier.

  2. 2.

    Reprinted from Progress in Biophysics and Molecular Biology, Volume 88, Issue 3, Lawrence J. DeLucas, David Hamrick, Larry Cosenza, Lisa Nagy, Debbie McCombs, Terry Bray, Arnon Chait, Brad Stoops, Alexander Belgovskiy, W. William Wilson, Marc Parham, Nikolai Chernov, Protein crystallization: virtual screening and optimization, Pages 285–309, Copyright (2005) with permission from Elsevier.

  3. 3.

    https://github.com/ubccr/cockatoo/.

References

  1. Hampton Research Screen HT. https://hamptonresearch.com/documents/product/hr000783_crystal_screen_2.xls. Accessed 1 November 2015.

  2. Microlytics MCSG-3 Screen. http://www.microlytic.com/sites/default/files/MCSG3_Formulations_0_0_0.pdf. Accessed 1 November 2015.

  3. Molecular Dynamics JCGS+ Screen. http://www.moleculardimensions.com/applications/upload/Md1-40%20JCSG%20Plus%20HT-96.pdf. Accessed 1 November 2015.

  4. Abergel, C., Moulard, M., Moreau, H., Loret, E., Cambillau, C., & Fontecilla-Camps, J. C. (1991). Systematic use of the incomplete factorial approach in the design of protein crystallization experiments. Journal of Biological Chemistry, 266(30), 20131–20138.

    Google Scholar 

  5. Asenjo, J. A., & Andrews, B. A. (2011). Aqueous two-phase systems for protein separation: a perspective. Journal of Chromatography A, 1218(49), 8826–8835.

    Article  Google Scholar 

  6. Asenjo, J. A., & Andrews, B. A. (2012). Aqueous two-phase systems for protein separation: phase separation and applications. Journal of Chromatography A, 1238, 1–10.

    Article  Google Scholar 

  7. Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of southern wisconsin. Ecological Monographs, 27(4), 325–349.

    Article  Google Scholar 

  8. Brodersen, D. E., Andersen, G. R., & Andersen, C. B. F. (2013). Mimer: an automated spreadsheet-based crystallization screening system. Acta Crystallographica Section F, 69(7), 815–820.

    Google Scholar 

  9. Bruno, A.E., Ruby, A.M., Luft, J.R., Grant, T.D., Seetharaman, J., Montelione, G.T., Hunt, J.F., and Snell, E.H. Comparing chemistry to outcome: the development of a chemical distance metric, coupled with clustering and hierarchal visualization applied to macromolecular crystallography.

    Google Scholar 

  10. Carter, C. W, Jr., & Carter, C. W. (1979). Protein crystallization using incomplete factorial experiments. The Journal of Biological Chemistry, 254(23), 12219–12223.

    Google Scholar 

  11. D’Arcy, A., Bergfors, T., Cowan-Jacob, S. W., & Marsh, M. (2014). Microseed matrix screening for optimization in protein crystallization: what have we learned? Acta Crystallographica Section F: Structural Biology Communications, 70(9), 1117–1126.

    Google Scholar 

  12. DeLucas, L. J., Hamrick, D., Cosenza, L., Nagy, L., McCombs, D., Bray, T., et al. (2005). Protein crystallization: virtual screening and optimization. Progress in Biophysics and Molecular Biology, 88(3), 285–309.

    Article  Google Scholar 

  13. Dinc, I. (2016). Associtiave Data Analytics and its Application to Protein Crystallization Analysis. Ph.D dissertation, University of Alabama in Huntsville.

    Google Scholar 

  14. Dinç, İ., Pusey, M.L., and Aygün, R.S. (2015). Protein crystallization screening using associative experimental design. In Bioinformatics Research and Applications (pp. 84–95). Springer.

    Google Scholar 

  15. Dinç, İ., Pusey, M. L., & Aygün, R. S. (2016). Optimizing Associative Experimental Design for Protein Crystallization Screening. IEEE Transactions on NanoBioscience, 15(2), 101–112.

    Article  Google Scholar 

  16. Doudna, J. A., Grosshans, C., Gooding, A., & Kundrot, C. E. (1993). Crystallization of ribozymes and small rna motifs by a sparse matrix approach. Proceedings of the National Academy of Sciences, 90(16), 7829–7833.

    Article  Google Scholar 

  17. Forsythe, E., Achari, A., & Pusey, M. L. (2006). Trace fluorescent labeling for high-throughput crystallography. Acta Crystallographica Section D: Biological Crystallography, 62(3), 339–346.

    Article  Google Scholar 

  18. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., and Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. Springer.

    Google Scholar 

  19. Giegé, R. (2013). A historical perspective on protein crystallization from 1840 to the present day. FEBS Journal, 280(24), 6456–6497.

    Article  Google Scholar 

  20. Jancarik, J., & Kim, S.-H. (1991). Sparse matrix sampling: a screening method for crystallization of proteins. Journal of Applied Crystallography, 24(4), 409–411.

    Article  Google Scholar 

  21. Kwon, J. S.-I., Nayhouse, M., Christofides, P. D., & Orkoulas, G. (2013). Modeling and control of protein crystal shape and size in batch crystallization. AIChE Journal, 59(7), 2317–2327.

    Article  Google Scholar 

  22. Luft, J. R., Newman, J., & Snell, E. H. (2014). Crystallization screening: the influence of history on current practice. Structural Biology and Crystallization Communications, 70(7), 835–853.

    Article  Google Scholar 

  23. McPherson, A., & Cudney, B. (2014). Optimization of crystallization conditions for biological macromolecules. Structural Biology and Crystallization Communications, 70(11), 1445–1467.

    Article  Google Scholar 

  24. McPherson, A., & Gavira, J. A. (2014). Introduction to protein crystallization. Acta Crystallographica Section F: Structural Biology Communications, 70(1), 2–20.

    Article  Google Scholar 

  25. Newman, J., Fazio, V. J., Lawson, B., & Peat, T. S. (2010). The c6 web tool: a resource for the rational selection of crystallization conditions. Crystal Growth and Design, 10(6), 2785–2792.

    Article  Google Scholar 

  26. Ng, J. D., Gavira, J. A., & García-Ruíz, J. M. (2003). Protein crystallization by capillary counterdiffusion for applied crystallographic structure determination. Journal of structural biology, 142(1), 218–231.

    Article  Google Scholar 

  27. Petersen, B., Petersen, T. N., Andersen, P., Nielsen, M., & Lundegaard, C. (2009). A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC structural biology, 9(1), 1.

    Article  Google Scholar 

  28. Pikuta, E. V., Marsic, D., Itoh, T., Bej, A. K., Tang, J., Whitman, W. B., et al. (2007). Thermococcus thioreducens sp. nov., a novel hyperthermophilic, obligately sulfur-reducing archaeon from a deep-sea hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology, 57(7), 1612–1618.

    Article  Google Scholar 

  29. Pusey, M., Barcena, J., Morris, M., Singhal, A., Yuan, Q., & Ng, J. (2015). Trace fluorescent labeling for protein crystallization. Structural Biology and Crystallization Communications, 71, 7.

    Google Scholar 

  30. Raja, S., Murty, V. R., Thivaharan, V., Rajasekar, V., & Ramesh, V. (2011). Aqueous two phase systems for the recovery of biomolecules-a review. Science and Technology, 1(1), 7–16.

    Article  Google Scholar 

  31. Saridakis, E. (2011). Novel Genetic Algorithm-Inspired Concept for Macromolecular Crystal Optimization. Crystal Growth and Design, 11(7), 2993–2998.

    Article  Google Scholar 

  32. Sigdel, M., Pusey, M. L., & Aygun, R. S. (2013). Real-time protein crystallization image acquisition and classification system. Crystal Growth and Design, 13(7), 2728–2736.

    Article  Google Scholar 

  33. Snell, E. H., Nagel, R. M., Wojtaszcyk, A., O’Neill, H., Wolfley, J. L., & Luft, J. R. (2008). The application and use of chemical space mapping to interpret crystallization screening results. Acta Crystallographica Section D: Biological Crystallography, 64(12), 1240–1249.

    Article  Google Scholar 

  34. Stevens, R. C. (2000). High-throughput protein crystallization. Current Opinion in Structural Biology, 10(5), 558–563.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The the first and second paragraphs (except the first sentences) of Sect. 3.3 are Reprinted from Progress in Biophysics and Molecular Biology, Volume 88, Issue 3, Lawrence J. DeLucas, David Hamrick, Larry Cosenza, Lisa Nagy, Debbie McCombs, Terry Bray, Arnon Chait, Brad Stoops, Alexander Belgovskiy, W. William Wilson, Marc Parham, Nikolai Chernov, Protein crystallization: virtual screening and optimization, Pages 285–309, Copyright (2005) with permission from Elsevier.

      The second paragraph (except the first two sentences) and the third paragraph of Sect. 3.4 are Reprinted (adapted) with permission from Crystal Growth and Design 2011 11 (7), Emmanuel Saridakis, Novel Genetic Algorithm-Inspired Concept for Macromolecular Crystal Optimization, 2993–2998. Copyright (2011) American Chemical Society. \(\copyright \)2016 IEEE. Reprinted, with permission, from I. Dinç, M. L. Pusey, and R. S. Aygün, “Optimizing Associative Experimental Design for Protein Crystallization Screening,” in IEEE Transactions on NanoBioscience, vol. 15, no. 2, pp. 101–112, March 2016. doi: https://doi.org/10.1109/TNB.2016.2536030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc L. Pusey .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pusey, M.L., Aygün, R.S. (2017). Computational Methods for Protein Crystallization Screening. In: Data Analytics for Protein Crystallization. Computational Biology, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-58937-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58937-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58936-7

  • Online ISBN: 978-3-319-58937-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics