Introduction to Protein Crystallization

Part of the Computational Biology book series (COBO, volume 25)


This chapter reviews the basics of the protein crystallization process. As amply proven by the protein structure initiative, protein crystallization can be carried out without any basic knowledge about the specific protein or how it behaves in solution. However, when the goal is not just processing as many proteins as can be produced, but is directed toward a better understanding of a specific biological moiety, a better understanding of what is being done, what one is observing, and how they all relate to the crystal nucleation and growth process is an invaluable aid in translating the observed screening results to a successful outcome. Informed observation is a key component to increased success. Similarly, there are a plethora of approaches that can be taken to screening for crystals, and knowing the strengths and weaknesses of each is key to matching them to the immediate goals to be achieved.


  1. 1.
    Abergel, C., Moulard, M., Moreau, H., Loret, E., Cambillau, C., & Fontecilla–Camps, J. C. (1991). Systematic use of the incomplete factorial approach in the design of protein crystallization experiments. Journal of Biological Chemistry, 266(30), 20131–20138.Google Scholar
  2. 2.
    Ai, X., & Caffrey, M. (2000). Membrane protein crystallization in lipidic mesophases: Detergent effects. Biophysical Journal, 79(1), 394–405.CrossRefGoogle Scholar
  3. 3.
    Bell, J. B., Jones, M. E., & Carter, C. W. (1991). Crystallization of yeast orotidine 5\(^{\prime }\)-monophosphate decarboxylase complexed with 1-(5\(^{\prime }\)-phospho-\(\beta \)-D-ribofuranosyl) barbituric acid. Proteins: Structure, Function, and Bioinformatics, 9(2), 143–151.CrossRefGoogle Scholar
  4. 4.
    Betts, L., Frick, L., Wolfenden, R., & Carter, C. W. (1989). Incomplete factorial search for conditions leading to high quality crystals of Escherichia coli cytidine deaminase complexed to a transition state analog inhibitor. Journal of Biological Chemistry, 264(12), 6737–6740.Google Scholar
  5. 5.
    Boutet, S., Lomb, L., Williams, G. J., Barends, T. R. M., Aquila, A., Doak, R. B., Weierstall, U., DePonte, D. P., Steinbrener, J., Shoeman, R. L., Messerschmidt, M., Barty, A., White, T. A., Kassemeyer, S., Kirian, R. A., Seibert, M. M., Montanez, P. A., Kenney, C., Herbst, R., Hart, P., Pines, J., Haller, G., Gruner, S. M., Philipp, H. T., Tate, M. W., Hromalik, M., Koerner, L. J., Bakel, N. v., Morse, J., Ghonsalves, W., Arnlund, D., Bogan, M. J., Caleman, C., Fromme, R., Hampton, C. Y., Hunter, M. S., Johansson, L. C., Katona, G., Kupitz, C., Liang, M., Martin, A. V., Nass, K., Redecke, L., Stellato, F., Timneanu, N., Wang, D., Zatsepin, N. A., Schafer, D., Defever, J., Neutze, R., Fromme, P., Spence, J. C. H., Chapman, H. N., & Schlichting, I. (2012). High-Resolution protein structure determination by serial femtosecond crystallography. Science 337(6092), 362–364.Google Scholar
  6. 6.
    Carter, C. W. (1997). [5] Response surface methods for optimizing and improving reproducibility of crystal growth. Methods in Enzymology, 276, 74–99.CrossRefGoogle Scholar
  7. 7.
    Carter, C. W., Baldwin, E. T., & Frick, L. (1988). Statistical design of experiments for protein crystal growth and the use of a precrystallization assay. Journal of Crystal Growth, 90(1–3), 60–73.Google Scholar
  8. 8.
    Carter, C. W., & Carter, C. W. (1979). Protein crystallization using incomplete factorial experiments. Journal of Biological Chemistry, 254(23), 12219–12223.Google Scholar
  9. 9.
    DeLucas, L. J., Bray, T. L., Nagy, L., McCombs, D., Chernov, N., Hamrick, D., et al. (2003). Efficient protein crystallization. Journal of Structural Biology, 142(1), 188–206.CrossRefGoogle Scholar
  10. 10.
    Dierks, K., Meyer, A., Oberthü, D., Rapp, G., Einspahr, H., & Betzel, C. (2010). Efficient UV detection of protein crystals enabled by fluorescence excitation at wavelengths longer than 300 nm. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 66(4), 478–484.Google Scholar
  11. 11.
    Forsythe, E., Achari, A., & Pusey, M. L. (2006). Trace fluorescent labeling for high-throughput crystallography. Acta Crystallographica Section D: Biological Crystallography, 62(3), 339–346.CrossRefGoogle Scholar
  12. 12.
    García-Ruiz, J. M. The Uses of crystal growth in gels and other diffusing-reacting systems. Key Engineering Materials 58 (1991), 87–106.Google Scholar
  13. 13.
    Gavira, J. A., Toh, D., Lopéz–Jaramillo, J., & García–Ruiz, J. M. (2002). Ab initio crystallographic structure determination of insulin from protein to electron density without crystal handling. Acta Crystallographica Section D: Biological Crystallography, 58(7), 1147–1154.CrossRefGoogle Scholar
  14. 14.
    George, A., & Wilson, W. W. (1994). Predicting protein crystallization from a dilute solution property. Acta Crystallographica Section D: Biological Crystallography, 50(4), 361–365.CrossRefGoogle Scholar
  15. 15.
    Groves, M. R., Müller, I. B., Kreplin, X., & Müller-Dieckmann, J. (2007). A method for the general identification of protein crystals in crystallization experiments using a noncovalent fluorescent dye. Acta Crystallographica Section D: Biological Crystallography, 63(4), 526–535.CrossRefGoogle Scholar
  16. 16.
    Hill, T. L. (1959). Theory of solutions. II. osmotic pressure virial expansion and light scattering in two component solutions. The Journal of Chemical Physics, 30(1), 93–97.CrossRefGoogle Scholar
  17. 17.
    Jancarik, J., & Kim, S.-H. (1991). Sparse matrix sampling: A screening method for crystallization of proteins. Journal of Applied Crystallography, 24(4), 409–411.CrossRefGoogle Scholar
  18. 18.
    Judge, R. A., Johns, M. R., & White, E. T. (1995). Protein purification by bulk crystallization: The recovery of ovalbumin. Biotechnology and Bioengineering, 48(4), 316–323.CrossRefGoogle Scholar
  19. 19.
    Judge, R. A., Swift, K., & González, C. (2005). An ultraviolet fluorescence-based method for identifying and distinguishing protein crystals. Acta Crystallographica Section D: Biological Crystallography, 61(1), 60–66.CrossRefGoogle Scholar
  20. 20.
    Kissick, D. J., Wanapun, D., & Simpson, G. J. (2011). Second-order nonlinear optical imaging of chiral crystals. Annual Review of Analytical Chemistry, 4(1), 419–437.CrossRefGoogle Scholar
  21. 21.
    Luft, J. R., Collins, R. J., Fehrman, N. A., Lauricella, A. M., Veatch, C. K., & DeTitta, G. T. (2003). A deliberate approach to screening for initial crystallization conditions of biological macromolecules. Journal of Structural Biology, 142(1), 170–179.CrossRefGoogle Scholar
  22. 22.
    Lukk, T., Gillilan, R. E., Szebenyi, D. M. E., & Zipfel, W. R. (2016). A visible-light-excited fluorescence method for imaging protein crystals without added dyes. Journal of Applied Crystallography, 49(1), 234–240.CrossRefGoogle Scholar
  23. 23.
    Madden, J. T., DeWalt, E. L., & Simpson, G. J. (2011). Two-photon excited UV fluorescence for protein crystal detection. Acta Crystallographica Section D: Biological Crystallography, 67(10), 839–846.CrossRefGoogle Scholar
  24. 24.
    Mason, R. L., Gunst, R. F., & Hess, J. L. (2003). Statistical Design and Analysis of Experiments: With Applications to Engineering and Science (2nd ed.)., Wiley series in probability and statistics New York: Wiley.CrossRefzbMATHGoogle Scholar
  25. 25.
    Myers, R., & Montgomery, D. (2009). Response Surface Methdology: Product and Process Optimization Using Designed Experiments. 1995 (4th ed.). New York: Wiley.zbMATHGoogle Scholar
  26. 26.
    Nagel, R. M., Luft, J. R., & Snell, E. H. (2008). AutoSherlock: A program for effective crystallization data analysis. Journal of Applied Crystallography, 41(6), 1173–1176.CrossRefGoogle Scholar
  27. 27.
    Padayatti, P., Palczewska, G., Sun, W., Palczewski, K., & Salom, D. (2012). Imaging of protein crystals with two-photon microscopy. Biochemistry, 51(8), 1625–1637.CrossRefGoogle Scholar
  28. 28.
    Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P., & Landau, E. M. (1997). X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science, 277(5332), 1676–1681.CrossRefGoogle Scholar
  29. 29.
    Pusey, M., Barcena, J., Morris, M., Singhal, A., Yuan, Q., & Ng, J. (2015). Trace fluorescent labeling for protein crystallization. Acta Crystallographica Section F: Structural Biology Communications, 71(7), 806–814.Google Scholar
  30. 30.
    Rupp, B. (2015). Origin and use of crystallization phase diagrams. Acta Crystallographica Section F: Structural Biology Communications, 71(3), 247–260.Google Scholar
  31. 31.
    Saijo, S., Sato, T., Tanaka, N., Ichiyanagi, A., Sugano, Y., & Shoda, M. (2005). Precipitation diagram and optimization of crystallization conditions at low ionic strength for deglycosylated dye-decolorizing peroxidase from a basidiomycete. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 61(8), 729–732.Google Scholar
  32. 32.
    Saridakis, E. (2011). Novel genetic algorithm-inspired concept for macromolecular crystal optimization. Crystal Growth and Design, 11(7), 2993–2998.CrossRefGoogle Scholar
  33. 33.
    Sedzik, J. (1994). Design: A guide to protein crystallization experiments. Archives of Biochemistry and Biophysics, 308(2), 342–348.CrossRefGoogle Scholar
  34. 34.
    Sedzik, J. (1995). Regression analysis of factorially designed trials – a logical approach to protein crystallization. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1251(2), 177–185.Google Scholar
  35. 35.
    Segelke, B. W. (2001). Efficiency analysis of sampling protocols used in protein crystallization screening. Journal of Crystal Growth, 232(1), 553–562.CrossRefGoogle Scholar
  36. 36.
    Snell, E. H., Nagel, R. M., Wojtaszcyk, A., O’Neill, H., Wolfley, J. L., & Luft, J. R. (2008). The application and use of chemical space mapping to interpret crystallization screening results. Acta Crystallographica Section D: Biological Crystallography, 64(12), 1240–1249.CrossRefGoogle Scholar
  37. 37.
    Stura, E. A., Nemerow, G. R., & Wilson, I. A. (1992). Strategies in the crystallization of glycoproteins and protein complexes. Journal of Crystal Growth, 122(1), 273–285.CrossRefGoogle Scholar
  38. 38.
    Tran, T. T., Sorel, I., & Lewit-Bentley, A. (2004). Statistical experimental design of protein crystallization screening revisited. Acta Crystallographica Section D: Biological Crystallography, 60(9), 1562–1568.CrossRefGoogle Scholar
  39. 39.
    Walter, T. S., Meier, C., Assenberg, R., Au, K.-F., Ren, J., Verma, A., et al. (2006). Lysine methylation as a routine rescue strategy for protein crystallization. Structure, 14(11), 1617–1622.CrossRefGoogle Scholar
  40. 40.
    Wills, P. R., Comper, W. D., & Winzor, D. J. (1993). Thermodynamic nonideality in macromolecular solutions: Interpretation of virial coefficients. Archives of Biochemistry and Biophysics, 300(1), 206–212.CrossRefGoogle Scholar
  41. 41.
    Wills, P. R., Jacobsen, M. P., & Winzor, D. J. (2000). Analysis of sedimentation equilibrium distributions reflecting nonideal macromolecular associations. Biophysical Journal, 79(4), 2178–2187.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.iXpressGenes, Inc.HuntsvilleUSA
  2. 2.University of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations