Skip to main content

Stochastic Differential Mean Field Games

  • Chapter
  • First Online:
Probabilistic Theory of Mean Field Games with Applications I

Part of the book series: Probability Theory and Stochastic Modelling ((PTSM,volume 83))

Abstract

The goal of this chapter is to propose solutions to asymptotic forms of the search for Nash equilibria for large stochastic differential games with mean field interactions. We implement the Mean Field Game strategy, initially developed by Lasry and Lions in an analytic set-up, in a purely probabilistic framework. The roads to solutions go through a class of standard stochastic control problems followed by fixed point problems for flows of probability measures. We tackle the inherent stochastic optimization problems in two different ways. Once by representing the value function as the solution of a backward stochastic differential equation (reminiscent of the so-called weak formulation approach), and a second time using the Pontryagin stochastic maximum principle. In both cases, the optimization problem reduces to the solutions of a Forward-Backward Stochastic Differential Equation (FBSDE for short). The search for a fixed flow of probability measures turns the FBSDE into a system of equations of the McKean-Vlasov type where the distribution of the solution appears in the coefficients. In this way, both the optimization and interaction components of the problem are captured by a single FBSDE, avoiding the twofold reference to Hamilton-Jacobi-Bellman equations on the one hand, and to Kolmogorov equations on the other hand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. S. Ahuja. Wellposedness of mean field games with common noise under a weak monotonicity condition. SIAM Journal on Control and Optimization, 54:30–48, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Aumann. Markets with a continuum of traders. Econometrica, 32:39–50, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Bardi. Explicit solutions of some linear quadratic mean field games. Networks and Heterogeneous Media, 7:243–261, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bensoussan, J. Frehse, and P. Yam. Mean Field Games and Mean Field Type Control Theory. SpringerBriefs in Mathematics. Springer-Verlag New York, 2013.

    Book  MATH  Google Scholar 

  5. A. Bensoussan, K.C.J. Sung, S.C.P. Yam, and S.P. Yung. Linear quadratic mean field games. Journal of Optimization Theory and Applications, 169:469–529, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  6. D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 1995.

    MATH  Google Scholar 

  7. J.-M. Bismut. Théorie probabiliste du contrôle des diffusions, Memoirs of the American Mathematical Society, 167(4), 1976.

    Google Scholar 

  8. J.M. Bismut. An introductory approach to duality in optimal stochastic control. SIAM Review, 20:62–78, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  9. V.S. Borkar. Controlled diffusion processes. Probability Surveys, 2:213–244, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Buckdahn, B. Djehiche, and J. Li. Mean field backward stochastic differential equations and related partial differential equations. Stochastic Processes and their Applications, 119:3133–3154, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Buckdahn, B. Djehiche, J. Li, and S. Peng. Mean field backward stochastic differential equations: A limit approach. Annals of Probability, 37:1524–1565, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Cardaliaguet. Notes from P.L. Lions’ lectures at the Collège de France. Technical report, https://www.ceremade.dauphine.fr/$sim$cardalia/MFG100629.pdf, 2012.

  13. P. Cardaliaguet. Weak solutions for first order mean field games with local coupling. In P. Bettiol et al., editors, Analysis and Geometry in Control Theory and its Applications. Springer INdAM Series, pages 111–158. Springer International Publishing, 2015.

    Google Scholar 

  14. P. Cardaliaguet and J. Graber. Mean field games systems of first order. ESAIM: Control, Optimisation and Calculus of Variations, 21:690–722, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Cardaliaguet, J. Graber, A. Porretta, and D. Tonon. Second order mean field games with degenerate diffusion and local coupling. Nonlinear Differential Equations and Applications NoDEA, 22:1287–1317, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Cardaliaguet, A. R. Mészáros, and F. Santambrogio. First order mean field games with density constraints: Pressure equals price. SIAM Journal on Control and Optimization, 54:2672–2709, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Carmona. Lectures on BSDEs, Stochastic Control and Stochastic Differential Games. SIAM, 2015.

    Google Scholar 

  18. R. Carmona and F. Delarue. Mean field forward-backward stochastic differential equations. Electronic Communications in Probability, 2013.

    Google Scholar 

  19. R. Carmona, F. Delarue, and A. Lachapelle. Control of McKean-Vlasov versus mean field games. Mathematics and Financial Economics, 7:131–166, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Carmona and D. Lacker. A probabilistic weak formulation of mean field games and applications. Annals of Applied Probability, 25:1189–1231, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  21. P. G. Ciarlet. Introduction to Numerical Linear Algebra and Optimisation. Cambridge Texts in Applied Mathematics. Cambridge University Press, 1989.

    Google Scholar 

  22. D. Duffie and Y. Sun. Existence of independent random matching. Annals of Applied Probability, 17:385–419, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  23. W.H. Fleming and M. Soner. Controlled Markov Processes and Viscosity Solutions. Stochastic Modelling and Applied Probability. Springer-Verlag, New York, 2010.

    MATH  Google Scholar 

  24. W.H. Fleming. Generalized solutions in optimal stochastic control. In Proceedings of the Second Kingston Conference on Differential Games, pages 147–165. Marcel Dekker, 1977.

    Google Scholar 

  25. D. Fudenberg and D. Levine. Open-loop and closed-loop equilibria in dynamic games with many players. Journal of Economic Theory, 44:1–18, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.

    Google Scholar 

  27. J. Gatheral, A. Schied, and A. Slynko. Transient linear price impact and Fredholm integral equations. Mathematical Finance, 22:445–474, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  28. D.A. Gomes, L. Nurbekyan, and E. Pimentel. Economic Models and Mean-field Games Theory. Publicaões Matemáticas, IMPA, Rio, Brazil, 2015.

    MATH  Google Scholar 

  29. D.A. Gomes and E. Pimentel. Time-dependent mean-field games with logarithmic nonlinearities. SIAM Journal of Mathematical Analysis, 47:3798–3812, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  30. D.A. Gomes and E. Pimentel. Local regularity for mean-field games in the whole space. Minimax Theory and its Applications, 1:65–82, 2016.

    MathSciNet  MATH  Google Scholar 

  31. D.A. Gomes, E. Pimentel, and H. Sánchez-Morgado. Time-dependent mean-field games in the sub- quadratic case. Communications in Partial Differential Equations, 40:40–76, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  32. D.A. Gomes, E. Pimentel, and H. Sánchez-Morgado. Time-dependent mean-field games in the superquadratic case. ESAIM: Control, Optimisation and Calculus of Variations, 22:562–580, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  33. D.A. Gomes, E. Pimentel, and V. Voskanyan. Regularity Theory for Mean-Field Game Systems. SpringerBriefs in Mathematics Springer International Publishing, 2016.

    Google Scholar 

  34. O. Guéant. Mean field games equations with quadratic Hamiltonian: A specific approach. Mathematical Models and Methods in Applied Sciences, 22:291–303, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  35. O. Guéant, J.M. Lasry, and P.L. Lions. Mean field games and applications. In R. Carmona et al., editors, Paris Princeton Lectures on Mathematical Finance 2010. Volume 2003 of Lecture Notes in Mathematics. Springer-Verlag Berlin Heidelberg, 2010.

    Google Scholar 

  36. S. Hamadène and J.P. Lepeltier. Backward equations, stochastic control and zero-sum stochastic differential games. Stochastics and Stochastic Reports, 54:221–231, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  37. Y. Hu. Stochastic maximum principle. In John Baillieul, Tariq Samad, editors, Encyclopedia of Systems and Control, pages 1347–1350. Springer-Verlag London, 2015.

    Google Scholar 

  38. M. Huang, P.E. Caines, and R.P. Malhamé. Individual and mass behavior in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. In Proceedings of the 42nd IEEE International Conference on Decision and Control, pages 98–103. 2003.

    Google Scholar 

  39. M. Huang, P.E. Caines, and R.P. Malhamé. Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Communications in Information and Systems, 6:221–252, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Huang, P.E. Caines, and R.P. Malhamé. Large population cost coupled LQG problems with nonuniform agents: individual mass behavior and decentralized ε-Nash equilibria. IEEE Transactions on Automatic Control, 52:1560–1571, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Huang, R.P. Malhamé, and P.E. Caines. Nash equilibria for large population linear stochastic systems with weakly coupled agents. In R.P. Malhamé, E.K. Boukas, editors, Analysis, Control and Optimization of Complex Dynamic Systems, pages 215–252. Springer-US, 2005.

    Google Scholar 

  42. N. El Karoui, S. Peng, and M.C. Quenez. Backward stochastic differential equations in finance. Mathematical Finance, 7:1–71, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  43. D. Lacker. Mean field games via controlled martingale problems: Existence of markovian equilibria. Stochastic Processes and their Applications, 125:2856–2894, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  44. J.M. Lasry and P.L. Lions. Jeux à champ moyen I. Le cas stationnaire. Comptes Rendus de l’Académie des Sciences de Paris, ser. I, 343:619–625, 2006.

    Google Scholar 

  45. J.M. Lasry and P.L. Lions. Jeux à champ moyen II. Horizon fini et contrôle optimal. Comptes Rendus de l’Académie des Sciences de Paris, ser. I, 343:679–684, 2006.

    Google Scholar 

  46. J.M. Lasry and P.L. Lions. Mean field games. Japanese Journal of Mathematics, 2:229–260, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  47. P.L. Lions. Théorie des jeux à champs moyen et applications. Lectures at the Collège de France. http://www.college-de-france.fr/default/EN/all/equ_der/cours_et_seminaires.htm, 2007–2008.

  48. J. Ma and J. Yong. Forward-Backward Stochastic Differential Equations and their Applications. Volume 1702 of Lecture Notes in Mathematics. Springer-Verlag Berlin Heidelberg, 2007.

    Google Scholar 

  49. E. Pardoux and S. Peng. Adapted solution of a backward stochastic differential equation. Systems & Control Letters, 14:55–61, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  50. E. Pardoux and S. Peng. Backward SDEs and quasilinear PDEs. In B. L. Rozovskii and R. B. Sowers, editors, Stochastic Partial Differential Equations and Their Applications. Volume 176 of Lecture Notes in Control and Information Sciences. Springer-Verlag Berlin Heidelberg, 1992.

    Google Scholar 

  51. E. Pardoux and A. Rǎşcanu. Stochastic Differential Equations, Backward SDEs, Partial Differential Equations. Stochastic Modelling and Applied Probability. Springer International Publishing, 2014.

    Book  MATH  Google Scholar 

  52. S. Peng. A general stochastic maximum principle for optimal control problems. SIAM Journal on Control and Optimization, 2:966–979, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  53. S. Peng. A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation. Stochastics and Stochastics Reports, 38:119–134, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  54. H. Pham. On some recent aspects of stochastic control and their applications. Probability Surveys, 2:506–549, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  55. H. Pham. Continuous-time Stochastic Control and Optimization with Financial Applications. Stochastic Modelling and Applied Probability. Springer-Verlag Berlin Heidelberg, 2009.

    Book  MATH  Google Scholar 

  56. Y. Sun. The exact law of large numbers via Fubini extension and characterization of insurable risks. Journal of Economic Theory, 126:31–69, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  57. H. Tembine, Q. Zhu, and T. Basar. Risk-sensitive mean-field stochastic differential games. IEEE Transactions on Automatic Control, 59:835–850, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  58. N. Touzi. Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE. Fields Institute Monographs. Springer-Verlag New York, 2012.

    MATH  Google Scholar 

  59. J. Yong. Linear forward backward stochastic differential equations. Applied Mathematics & Optimization, 39:93–119, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  60. J. Yong. Linear forward backward stochastic differential equations with random coefficients. Probability Theory and Related Fields, 135:53–83, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  61. J. Yong and X. Zhou. Stochastic Controls: Hamiltonian Systems and HJB Equations. Stochastic Modelling and Applied Probability. Springer-Verlag New York, 1999.

    Book  MATH  Google Scholar 

  62. L.C. Young. Calculus of variations and control theory. W.B. Saunders, Philadelphia, 1969.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carmona, R., Delarue, F. (2018). Stochastic Differential Mean Field Games. In: Probabilistic Theory of Mean Field Games with Applications I. Probability Theory and Stochastic Modelling, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-319-58920-6_3

Download citation

Publish with us

Policies and ethics