Advances in Quantum Mechanics pp 135-151 | Cite as
Spherical Schrödinger Hamiltonians: Spectral Analysis and Time Decay
- 792 Downloads
Abstract
In this survey, we review recent results concerning the canonical dispersive flow e itH led by a Schrödinger Hamiltonian H. We study, in particular, how the time decay of space L p -norms depends on the frequency localization of the initial datum with respect to the some suitable spherical expansion. A quite complete description of the phenomenon is given in terms of the eigenvalues and eigenfunctions of the restriction of H to the unit sphere, and a comparison with some uncertainty inequality is presented.
Keywords
Dispersive estimates Electromagnetic potentials Schrödinger equationNotes
Acknowledgements
The author sincerely thanks all the organizers of the event Contemporary Trends in the Mathematics of Quantum Mechanics for the kind invitation, in particular Alessandro Michelangeli for his job. A special acknowledgement is to Prof. Gianfausto Dell’Antonio, for his beautiful scientific contributions, for his teachings, and for his friendship.
References
- 1.M. Beceanu, M. Goldberg, Schrödinger dispersive estimates for a scaling-critical class of potentials. Commun. Math. Phys. 314, 471–481 (2012)CrossRefzbMATHGoogle Scholar
- 2.A. Bezubik, A. Strasburger, A new form of the spherical expansion of zonal functions and Fourier transforms of \(\mathop{\mathrm{SO}}(d)\)-finite functions. SIGMA Symmetry Integrability Geom. Methods Appl. 2, Paper 033, 8 pp. (2006)Google Scholar
- 3.G. Borg, Umkerhrung der Sturm-Liouvillischen Eigebnvertanfgabe Bestimung der difúerentialgleichung die Eigenverte. Acta Math. 78, 1–96 (1946)MathSciNetCrossRefGoogle Scholar
- 4.N. Burq, F. Planchon, J. Stalker, S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential. J. Funct. Anal. 203(2), 519–549 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.N. Burq, F. Planchon, J. Stalker, S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay. Indiana Univ. Math. J. 53(6), 1665–1680 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.T. Cazenave, Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York (American Mathematical Society, Providence, 2003)Google Scholar
- 7.P. D’Ancona, L. Fanelli, L p-boundedness of the wave operator for the one dimensional Schrödinger operators. Commun. Math. Phys. 268, 415–438 (2006)CrossRefzbMATHGoogle Scholar
- 8.P. D’Ancona, L. Fanelli, Decay estimates for the wave and Dirac equations with a magnetic potential. Comm. Pure Appl. Math. 60, 357–392 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.T. Duyckaerts, Inégalités de résolvante pour l’opérateur de Schrödinger avec potentiel multipolaire critique. Bulletin de la Société mathématique de France 134, 201–239 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.M.B. Erdogan, M. Goldberg, W. Schlag, Strichartz and smoothing estimates for Schrodinger operators with large magnetic potentials in \(\mathbb{R}^{3}\). J. Eur. Math. Soc. 10, 507–531 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
- 11.M.B. Erdogan, M. Goldberg, W. Schlag, Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions. Forum Math. 21, 687–722 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.L. Fanelli, V. Felli, M. Fontelos, A. Primo, Time decay of scaling critical electromagnetic Schrödinger flows. Commun. Math. Phys. 324, 1033–1067 (2013)CrossRefzbMATHGoogle Scholar
- 13.L. Fanelli, V. Felli, M. Fontelos, A. Primo, Time decay of scaling invariant electromagnetic Schrödinger equations on the plane. Commun. Math. Phys. 337, 1515–1533 (2015)CrossRefzbMATHGoogle Scholar
- 14.L. Fanelli, V. Felli, M. Fontelos, A. Primo, Frequency-dependent time decay of Schrödinger flows. J. Spectral Theory (to appear in)Google Scholar
- 15.L. Fanelli, G. Grillo, H. Kovařík, Improved time-decay for a class of scaling critical electromagnetic Schrödinger flows. J. Funct. Anal. 269, 3336–3346 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 16.V. Felli, A. Ferrero, S. Terracini, Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential. J. Eur. Math. Soc. 13(1), 119–174 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 17.M. Goldberg, Dispersive estimates for the three-dimensional schrödinger equation with rough potential. Am. J. Math. 128, 731–750 (2006)CrossRefzbMATHGoogle Scholar
- 18.M. Goldberg, W. Schlag, Dispersive estimates for Schrödinger operators in dimensions one and three. Commun. Math. Phys. 251(1), 157–178 (2004)CrossRefzbMATHGoogle Scholar
- 19.G. Grillo, H. Kovarik, Weighted dispersive estimates for two-dimensional Schrödinger operators with Aharonov-Bohm magnetic field. J. Differ. Equ. 256, 3889–3911 (2014)CrossRefzbMATHGoogle Scholar
- 20.D. Gurarie, Zonal Schrödinger operators on the n-Sphere: inverse spectral problem and rRigidity. Commun. Math. Phys. 131 (1990), 571–603CrossRefzbMATHGoogle Scholar
- 21.M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and Its Applications, vol. 98 (Cambridge University Press, Cambridge, 2005)Google Scholar
- 22.H. Kalf, U.-W. Schmincke, J. Walter, R. Wüst, On the Spectral Theory of Schrödinger and Dirac Operators with Strongly Singular Potentials. Spectral Theory and Differential Equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens). Lecture Notes in Math., vol. 448 (Springer, Berlin, 1975), pp. 182–226Google Scholar
- 23.M. Keel, T. Tao, Endpoint strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
- 24.A. Laptev, T. Weidl, Hardy inequalities for magnetic Dirichlet forms. Mathematical results in quantum mechanics (Prague, 1998), 299–305; Oper. Theory Adv. Appl. 108, (Birkhäuser, Basel, 1999)Google Scholar
- 25.F. Planchon, J. Stalker, S. Tahvildar-Zadeh, Dispersive estimates for the wave equation with the inverse-square potential. Discrete Contin. Dyn. Syst. 9, 1387–1400 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 26.I. Rodnianski, W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155(3), 451–513 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
- 27.W. Schlag, Dispersive estimates for Schrödinger operators: a survey. Mathematical Aspects of Nonlinear Dispersive Equations, 255285, Ann. of Math. Stud., vol. 163 (Princeton University Press, Princeton, 2007)Google Scholar
- 28.B. Simon, Essential self-adjointness of Schrödinger operators with singular potentials. Arch. Ration. Mech. Anal. 52, 44–48 (1973)CrossRefzbMATHGoogle Scholar
- 29.L.E. Thomas, C. Villegas-Blas, Singular continuous limiting eigenvalue distributions for Schrödinger operators on a 2-sphere. J. Funct. Anal. 141, 249–273 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
- 30.L.E. Thomas, S.R. Wassell, Semiclassical Approximation for Schrödinger operators on a two-sphere at high energy. J. Math. Phys. 36(10), 5480–5505 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
- 31.R. Weder, The W k, p-continuity of the Schrödinger wave operators on the line. Commun. Math. Phys. 208, 507–520 (1999)CrossRefzbMATHGoogle Scholar
- 32.R. Weder, \(L^{p} - L^{p^{{\prime}} }\) estimates for the Schrödinger equations on the line and inverse scattering for the nonlinear Schrödinger equation with a potential. J. Funct. Anal. 170, 37–68 (2000)Google Scholar
- 33.A. Weinstein, Asymptotics for eigenvalue clusters for the laplacian plus a potencial. Duke Math. J. 44(4), 883..892 (1977)Google Scholar
- 34.K. Yajima, Existence of solutions for Schrödinger evolution equations. Commun. Math. Phys. 110, 415–426 (1987)CrossRefzbMATHGoogle Scholar
- 35.K. Yajima, The W k, p-continuity of wave operators for Schrödinger operators. J. Math. Soc. Jpn. 47(3), 551–581 (1995)CrossRefzbMATHGoogle Scholar
- 36.K. Yajima, The W k, p-continuity of wave operators for Schrödinger operators III, even dimensional cases \(m\geqslant 4\). J. Math. Sci. Univ. Tokyo 2, 311–346 (1995)MathSciNetzbMATHGoogle Scholar
- 37.K. Yajima, L p-boundedness of wave operators for two-dimensional Schrödinger operators. Commun. Math. Phys. 208(1), 125–152 (1999)MathSciNetCrossRefzbMATHGoogle Scholar