Spherical Schrödinger Hamiltonians: Spectral Analysis and Time Decay

  • Luca FanelliEmail author
Part of the Springer INdAM Series book series (SINDAMS, volume 18)


In this survey, we review recent results concerning the canonical dispersive flow e itH led by a Schrödinger Hamiltonian H. We study, in particular, how the time decay of space L p -norms depends on the frequency localization of the initial datum with respect to the some suitable spherical expansion. A quite complete description of the phenomenon is given in terms of the eigenvalues and eigenfunctions of the restriction of H to the unit sphere, and a comparison with some uncertainty inequality is presented.


Dispersive estimates Electromagnetic potentials Schrödinger equation 



The author sincerely thanks all the organizers of the event Contemporary Trends in the Mathematics of Quantum Mechanics for the kind invitation, in particular Alessandro Michelangeli for his job. A special acknowledgement is to Prof. Gianfausto Dell’​Antonio, for his beautiful scientific contributions, for his teachings, and for his friendship.


  1. 1.
    M. Beceanu, M. Goldberg, Schrödinger dispersive estimates for a scaling-critical class of potentials. Commun. Math. Phys. 314, 471–481 (2012)CrossRefzbMATHGoogle Scholar
  2. 2.
    A. Bezubik, A. Strasburger, A new form of the spherical expansion of zonal functions and Fourier transforms of \(\mathop{\mathrm{SO}}(d)\)-finite functions. SIGMA Symmetry Integrability Geom. Methods Appl. 2, Paper 033, 8 pp. (2006)Google Scholar
  3. 3.
    G. Borg, Umkerhrung der Sturm-Liouvillischen Eigebnvertanfgabe Bestimung der difúerentialgleichung die Eigenverte. Acta Math. 78, 1–96 (1946)MathSciNetCrossRefGoogle Scholar
  4. 4.
    N. Burq, F. Planchon, J. Stalker, S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential. J. Funct. Anal. 203(2), 519–549 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    N. Burq, F. Planchon, J. Stalker, S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay. Indiana Univ. Math. J. 53(6), 1665–1680 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    T. Cazenave, Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York (American Mathematical Society, Providence, 2003)Google Scholar
  7. 7.
    P. D’Ancona, L. Fanelli, L p-boundedness of the wave operator for the one dimensional Schrödinger operators. Commun. Math. Phys. 268, 415–438 (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    P. D’Ancona, L. Fanelli, Decay estimates for the wave and Dirac equations with a magnetic potential. Comm. Pure Appl. Math. 60, 357–392 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    T. Duyckaerts, Inégalités de résolvante pour l’opérateur de Schrödinger avec potentiel multipolaire critique. Bulletin de la Société mathématique de France 134, 201–239 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    M.B. Erdogan, M. Goldberg, W. Schlag, Strichartz and smoothing estimates for Schrodinger operators with large magnetic potentials in \(\mathbb{R}^{3}\). J. Eur. Math. Soc. 10, 507–531 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    M.B. Erdogan, M. Goldberg, W. Schlag, Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions. Forum Math. 21, 687–722 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    L. Fanelli, V. Felli, M. Fontelos, A. Primo, Time decay of scaling critical electromagnetic Schrödinger flows. Commun. Math. Phys. 324, 1033–1067 (2013)CrossRefzbMATHGoogle Scholar
  13. 13.
    L. Fanelli, V. Felli, M. Fontelos, A. Primo, Time decay of scaling invariant electromagnetic Schrödinger equations on the plane. Commun. Math. Phys. 337, 1515–1533 (2015)CrossRefzbMATHGoogle Scholar
  14. 14.
    L. Fanelli, V. Felli, M. Fontelos, A. Primo, Frequency-dependent time decay of Schrödinger flows. J. Spectral Theory (to appear in)Google Scholar
  15. 15.
    L. Fanelli, G. Grillo, H. Kovařík, Improved time-decay for a class of scaling critical electromagnetic Schrödinger flows. J. Funct. Anal. 269, 3336–3346 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    V. Felli, A. Ferrero, S. Terracini, Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential. J. Eur. Math. Soc. 13(1), 119–174 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    M. Goldberg, Dispersive estimates for the three-dimensional schrödinger equation with rough potential. Am. J. Math. 128, 731–750 (2006)CrossRefzbMATHGoogle Scholar
  18. 18.
    M. Goldberg, W. Schlag, Dispersive estimates for Schrödinger operators in dimensions one and three. Commun. Math. Phys. 251(1), 157–178 (2004)CrossRefzbMATHGoogle Scholar
  19. 19.
    G. Grillo, H. Kovarik, Weighted dispersive estimates for two-dimensional Schrödinger operators with Aharonov-Bohm magnetic field. J. Differ. Equ. 256, 3889–3911 (2014)CrossRefzbMATHGoogle Scholar
  20. 20.
    D. Gurarie, Zonal Schrödinger operators on the n-Sphere: inverse spectral problem and rRigidity. Commun. Math. Phys. 131 (1990), 571–603CrossRefzbMATHGoogle Scholar
  21. 21.
    M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and Its Applications, vol. 98 (Cambridge University Press, Cambridge, 2005)Google Scholar
  22. 22.
    H. Kalf, U.-W. Schmincke, J. Walter, R. Wüst, On the Spectral Theory of Schrödinger and Dirac Operators with Strongly Singular Potentials. Spectral Theory and Differential Equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens). Lecture Notes in Math., vol. 448 (Springer, Berlin, 1975), pp. 182–226Google Scholar
  23. 23.
    M. Keel, T. Tao, Endpoint strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    A. Laptev, T. Weidl, Hardy inequalities for magnetic Dirichlet forms. Mathematical results in quantum mechanics (Prague, 1998), 299–305; Oper. Theory Adv. Appl. 108, (Birkhäuser, Basel, 1999)Google Scholar
  25. 25.
    F. Planchon, J. Stalker, S. Tahvildar-Zadeh, Dispersive estimates for the wave equation with the inverse-square potential. Discrete Contin. Dyn. Syst. 9, 1387–1400 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    I. Rodnianski, W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155(3), 451–513 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    W. Schlag, Dispersive estimates for Schrödinger operators: a survey. Mathematical Aspects of Nonlinear Dispersive Equations, 255285, Ann. of Math. Stud., vol. 163 (Princeton University Press, Princeton, 2007)Google Scholar
  28. 28.
    B. Simon, Essential self-adjointness of Schrödinger operators with singular potentials. Arch. Ration. Mech. Anal. 52, 44–48 (1973)CrossRefzbMATHGoogle Scholar
  29. 29.
    L.E. Thomas, C. Villegas-Blas, Singular continuous limiting eigenvalue distributions for Schrödinger operators on a 2-sphere. J. Funct. Anal. 141, 249–273 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    L.E. Thomas, S.R. Wassell, Semiclassical Approximation for Schrödinger operators on a two-sphere at high energy. J. Math. Phys. 36(10), 5480–5505 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    R. Weder, The W k, p-continuity of the Schrödinger wave operators on the line. Commun. Math. Phys. 208, 507–520 (1999)CrossRefzbMATHGoogle Scholar
  32. 32.
    R. Weder, \(L^{p} - L^{p^{{\prime}} }\) estimates for the Schrödinger equations on the line and inverse scattering for the nonlinear Schrödinger equation with a potential. J. Funct. Anal. 170, 37–68 (2000)Google Scholar
  33. 33.
    A. Weinstein, Asymptotics for eigenvalue clusters for the laplacian plus a potencial. Duke Math. J. 44(4), 883..892 (1977)Google Scholar
  34. 34.
    K. Yajima, Existence of solutions for Schrödinger evolution equations. Commun. Math. Phys. 110, 415–426 (1987)CrossRefzbMATHGoogle Scholar
  35. 35.
    K. Yajima, The W k, p-continuity of wave operators for Schrödinger operators. J. Math. Soc. Jpn. 47(3), 551–581 (1995)CrossRefzbMATHGoogle Scholar
  36. 36.
    K. Yajima, The W k, p-continuity of wave operators for Schrödinger operators III, even dimensional cases \(m\geqslant 4\). J. Math. Sci. Univ. Tokyo 2, 311–346 (1995)MathSciNetzbMATHGoogle Scholar
  37. 37.
    K. Yajima, L p-boundedness of wave operators for two-dimensional Schrödinger operators. Commun. Math. Phys. 208(1), 125–152 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Dipartimento di MatematicaSAPIENZA Università di RomaRomaItaly

Personalised recommendations