Skip to main content

Relative-Zeta and Casimir Energy for a Semitransparent Hyperplane Selecting Transverse Modes

  • Chapter
  • First Online:
Advances in Quantum Mechanics

Part of the book series: Springer INdAM Series ((SINDAMS,volume 18))

Abstract

We study the relative zeta function for the couple of operators A 0 and A α , where A 0 is the free unconstrained Laplacian in L 2(R d) (d ≥ 2) and A α is the singular perturbation of A 0 associated to the presence of a delta interaction supported by a hyperplane. In our setting the operatorial parameter α, which is related to the strength of the perturbation, is of the kind α = α(−Δ ), where −Δ is the free Laplacian in L 2(R d−1). Thus α may depend on the components of the wave vector parallel to the hyperplane; in this sense A α describes a semitransparent hyperplane selecting transverse modes.

As an application we give an expression for the associated thermal Casimir energy. Whenever α = χ I (−Δ ), where χ I is the characteristic function of an interval I, the thermal Casimir energy can be explicitly computed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We remark that here we are slightly abusing terminology, as “relative spectral measure” usually denotes the function \(e(v):={ v \over i\pi } \lim _{\varepsilon \rightarrow 0^{+}}\mathop{ \mathrm{Tr}}\nolimits \,(R(v^{2} + i\varepsilon ) - R_{0}(v^{2} - i\varepsilon ))\).

  2. 2.

    Following [36], for any s 0C we use the notation

    $$\displaystyle{\mbox{ Res}_{n}\Big\vert _{s=s_{0}}\zeta _{1}(s):= \left \{\begin{array}{c} \mbox{ coefficient of}\ (s - s_{0})^{-n} \\ \mbox{ in the Laurent expansion of}\ \zeta _{1}(s)\ \mbox{ at}\ s = s_{0} \end{array} \right \}\;.}$$

References

  1. S. Albeverio, G. Cognola, M. Spreafico, S. Zerbini, Singular perturbations with boundary conditions and the Casimir effect in the half space. J. Math. Phys. 51, 063502 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Albeverio, C. Cacciapuoti, M. Spreafico, Relative partition function of Coulomb plus delta interaction, arXiv:1510.04976 [math-ph], 24pp. To appear in the book J. Dittrich, H. Kovařík, A. Laptev (Eds.): Functional Analysis and Operator Theory for Quantum Physics. A Festschrift in Honor of Pavel Exner. (European Mathematical Society Publishing House, Zurich, 2016).

    Google Scholar 

  3. J.-P. Antoine, F. Gesztesy, J. Shabani, Exactly Solvable Models of Sphere Interactions in Quantum Mechanics. J. Phys. A Math. Gen. 20, 3687–3712 (1987)

    Article  MathSciNet  Google Scholar 

  4. M. Bordag, The Casimir Effect 50 Years Later: Proceedings of the Fourth Workshop on Quantum Field Theory Under the Influence of External Conditions, Leipzig, Germany, 14–18 September 1998 (World Scientific, Singapore, 1999)

    Book  MATH  Google Scholar 

  5. M. Bordag, D. Hennig, D. Robaschik, Vacuum energy in quantum field theory with external potentials concentrated on planes. J. Phys. A Math. Gen. 25, 4483–4498 (1992)

    Article  MathSciNet  Google Scholar 

  6. M. Bordag, G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Advances in the Casimir Effect, vol. 145 (Oxford University Press, Oxford, 2009)

    Book  MATH  Google Scholar 

  7. H.B. Casimir, On the attraction between two perfectly conducting plates. Proc. Kongl. Nedel. Akad. Wetensch 51, 793–795 (1948)

    MATH  Google Scholar 

  8. I. Cavero-Pelaez, K.A. Milton, K. Kirsten, Local and global Casimir energies for a semitransparent cylindrical shell. J. Phys. A 40, 3607–3632 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Dabrowski, J. Shabani, Finitely many sphere interactions in quantum mechanics: nonseparated boundary conditions. J. Math. Phys. 29, 2241–2244 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. J.S. Dowker, R. Critchley, Effective Lagrangian and energy-momentum tensor in de Sitter space. Phys. Rev. D 13(12), 3224 (1976)

    Google Scholar 

  11. J. Dowker, G. Kennedy, Finite temperature and boundary effects in static space-times. J. Phys. A Math. Gen. 11(5), 895–920 (1978)

    Article  MathSciNet  Google Scholar 

  12. E. Elizalde, S.D. Odintsov, A. Romeo, A.A. Bytsenko, S. Zerbini, Zeta Regularization Techniques with Applications (World Scientific, Singapore, 1994)

    Book  MATH  Google Scholar 

  13. D. Fermi, L. Pizzocchero, Local zeta regularization and the Casimir effect. Prog. Theor. Phys. 126(3), 419–434 (2011)

    Article  MATH  Google Scholar 

  14. D. Fermi, L. Pizzocchero, Local zeta regularization and the scalar Casimir effect I. A general approach based on integral kernels, 91pp. (2015), arXiv:1505.00711 [math-ph]

    Google Scholar 

  15. D. Fermi, L. Pizzocchero, Local zeta regularization and the scalar Casimir effect II. Some explicitly solvable cases, 54pp. (2015), arXiv:1505.01044 [math-ph]

    Google Scholar 

  16. D. Fermi, L. Pizzocchero, Local zeta regularization and the scalar Casimir effect III. the case with a background harmonic potential. Int. J. Mod. Phys. A 30(35), 1550213 (2015)

    Google Scholar 

  17. D. Fermi, L. Pizzocchero, Local zeta regularization and the scalar Casimir effect IV: the case of a rectangular box. Int. J. Mod. Phys. A 31, 1650003 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Fierz, On the attraction of conducting planes in vacuum. Helv. Phys. Acta 33, 855 (1960)

    MathSciNet  Google Scholar 

  19. N. Graham, R.L. Jaffe, V. Khemani, M. Quandt, M. Scandurra, H. Weigel, Calculating vacuum energies in renormalizable quantum field theories: a new approach to the Casimir problem. Nucl. Phys. B 645, 49–84 (2002)

    Article  MATH  Google Scholar 

  20. S.W. Hawking, Zeta function regularization of path integrals in curved spacetime. Commun. Math. Phys. 55(2), 133–148 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  21. R.P. Kanwal, Generalized Functions: Theory and Applications (Springer Science + Business Media, Boston, 2011)

    Google Scholar 

  22. N.R. Khusnutdinov, Zeta-function approach to Casimir energy with singular potentials. Phys. Rev. D 73, 025003 (2006)

    Article  MathSciNet  Google Scholar 

  23. S.G. Mamaev, N.N. Trunov, Vacuum expectation values of the energy-momentum tensor of quantized fields on manifolds of different topology and geometry. IV. Sov. Phys. J. 24(2), 171–174 (1981)

    Article  Google Scholar 

  24. J. Mehra, Temperature correction to the Casimir effect, Physica 37(1), 145–152 (1967)

    Article  Google Scholar 

  25. K.A. Milton, The Casimir effect: physical manifestations of zero-point energy (World Scientific, Singapore, 2001)

    Book  MATH  Google Scholar 

  26. K.A. Milton, Casimir energies and pressures for δ-function potentials. J. Phys. A 37, 6391–6406 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Minakshisundaram, A generalization of Epstein zeta functions. Can. J. Math. 1, 320–327 (1949)

    Article  MATH  Google Scholar 

  28. S. Minakshisundaram, A. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds. Canad. J. Math. 1, 242–256 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  29. W. Müller, Relative zeta functions, relative determinants and scattering theory. Commun. Math. Phys. 192, 309–347 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Munoz-Castaneda, J.M. Guilarte, A.M. Mosquera, Quantum vacuum energies and Casimir forces between partially transparent δ-function plates. Phys. Rev. D 87, 105020 (2013)

    Article  Google Scholar 

  31. G. Ortenzi, M. Spreafico, Zeta function regularization for a scalar field in a compact domain. J. Phys. A 37, 11499–11518 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Posilicano, A Krein-like formula for singular perturbations of self-adjoint operators and applications. J. Funct. Anal. 183(1), 109–147 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. D.B. Ray, I.M. Singer, R-torsion and the Laplacian on Riemannian manifolds. Adv. Math. 7(2), 145–210 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  34. R.T. Seeley, Complex powers of an elliptic operator, in Proceedings of Symposia in Pure Mathematics, vol. 10 (American Mathematical Society, Providence, 1967), pp. 288–307

    Google Scholar 

  35. J. Shabani, Finitely many δ interactions with supports on concentric spheres. J. Math. Phys. 29, 660–664 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Spreafico, S. Zerbini, Finite temperature quantum field theory on noncompact domains and application to delta interactions. Rep. Math. Phys. 63(1), 163–177 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. R.M. Wald, On the Euclidean approach to quantum field theory in curved spacetime. Commun. Math. Phys. 70(3), 221–242 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

C.C. and D.F. acknowledge the support of the FIR 2013 project “Condensed Matter in Mathematical Physics”, Ministry of University and Research of Italian Republic (code RBFR13WAET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Cacciapuoti .

Editor information

Editors and Affiliations

Appendix: The Case α = const. in Spatial Dimensions d = 3

Appendix: The Case α = const. in Spatial Dimensions d = 3

In order to make connection with the existing literature, in the present appendix we briefly review the computation of the Casimir energy for the 3-dimensional model described in Eq. (51), that is

$$\displaystyle{\alpha (\rho ) =\alpha _{0}\quad \mbox{ for all}\ \rho \in [0,+\infty )\ \mbox{ and some}\ \alpha _{0}> 0\qquad (d = 3)\;.}$$

As a matter of fact, it can be easily checked that all the arguments described in the present manuscript continue to make sense also in this particular case, even though α does not fulfil the required assumptions since it does not have compact support.

First of all, let us notice that the integral representation (20) for the function r 1(z) continues to make sense for any zC [0, +) (the integral in the cited equation is trivially seen to remain finite in the present case). Then, by the same arguments of Sect. 3.1 one obtains an expression like Eq. (26) for the relative spectral measure e 1(v); moreover, the term I α appearing therein (given by Eq. (27) ) can be evaluated explicitly. This allows to infer for the relative spectral measure the expression

$$\displaystyle{ e_{1}(v) = -{ v \over 2\pi ^{2}}\;\arctan \left ({\tilde{\alpha }_{0} \over v}\right )\,\chi _{(0,+\infty )}(v)\;, }$$
(53)

where \(\tilde{\alpha }_{0}\) is defined according to Eq. (49). This shows that the map ve 1(v) is continuous on (0, +) and fulfils, for any N ∈ {0, 1, 2, },

$$\displaystyle{ e_{1}(v) = \left \{\begin{array}{ll} O(v) &\quad \mbox{ for}\ v \rightarrow 0^{+}\;, \\ \sum _{n=0}^{N}{(-1)^{n+1}\,\tilde{\alpha }_{ 0}^{2n+1} \over 2\pi ^{2}(2n + 1)} \;v^{-2n} + O(v^{-2(N+1)})&\quad \mbox{ for}\ v \rightarrow +\infty \;. \\ \end{array} \right. }$$

Next, let us consider the representation (16) of the relative zeta function ζ 1(s) in terms of e 1(v); in view of the above considerations, it appears that the integral in the cited equation is finite for any complex s inside the strip

$$\displaystyle{ \Big\{s \in \mathbf{C}\;\Big\vert \;{1 \over 2} <\mathop{ \mathrm{Re}}\nolimits \,s <1\Big\}\;. }$$

To proceed, notice that for any such s the integral in Eq. (16) can be evaluated explicitly using the expression (53) for e 1(v); one obtains

$$\displaystyle{ \zeta _{1}(s) = -{ \tilde{\alpha }_{0}^{2-2s} \over 8\pi \,(s - 1)\,\cos (\pi s)}\;, }$$

which determines the analytic continuation of sζ 1(s) to a function which is meromorphic on the whole complex plane, with simple pole singularities at s = 1 and s = ±1∕2, ±3∕2,  .

Using the above expression for ζ 1(s) and Eqs. (44)–(45) for the thermal Casimir energy \(\mathcal{E}(\beta )\), one easily infers the final result (52), that is

$$\displaystyle{\begin{array}{c} \mathcal{E}(\beta ) ={ \tilde{\alpha }_{0}^{3} \over 12\pi ^{2}}\left ({4 \over 3} -\log (2\ell\tilde{\alpha }_{0})\!\right ) -{ 1 \over 2\pi ^{2}}\int _{0}^{+\infty }dv\;{ v^{2} \over e^{\beta v} - 1}\;\arctan \left ({\tilde{\alpha }_{0} \over v}\right )\,. \\ \end{array} }$$

For completeness, let us mention that the above expression can be easily employed to derive the zero temperature expansion (β → +) of the Casimir energy \(\mathcal{E}(\beta )\).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cacciapuoti, C., Fermi, D., Posilicano, A. (2017). Relative-Zeta and Casimir Energy for a Semitransparent Hyperplane Selecting Transverse Modes. In: Michelangeli, A., Dell'Antonio, G. (eds) Advances in Quantum Mechanics. Springer INdAM Series, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-58904-6_5

Download citation

Publish with us

Policies and ethics