On the Inverse Spectral Problems for Quantum Graphs

  • M. OlivieriEmail author
  • D. Finco
Part of the Springer INdAM Series book series (SINDAMS, volume 18)


We review some aspects of inverse spectral problems for quantum graphs. Under hypothesis of rational independence of lengths of edges it is possible, thanks to trace formulas, to reconstruct information on compact and non compact graphs from the knowledge, respectively, of the spectrum of Laplacian and of the scattering phase. In the case of Sturm-Liouville operators defined on compact graphs and in general for differential operators on compact star-graphs, unknown potentials can be recovered from the knowledge of the spectrum of operators obtained imposing different boundary conditions.


Inverse problems Inverse scattering problems Sturm-Liouville operators Quantum graphs 

MSC 2010

35R30 81U40 34B24 


  1. 1.
    V. Bargman, On the connection between phase shifts and scattering potentials. Rev. Mod. Phys. 21, 488–493 (1949)MathSciNetCrossRefGoogle Scholar
  2. 2.
    G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs. Mathematical Surveys and Monographs, vol. 186 (American Mathematical Society, Providence, 2013)Google Scholar
  3. 3.
    J.S. Chapman, Drums that sound the same. Am. Math. Mon. 102, 124–138 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    B. Gutkin, U. Smilansky, Can one hear the shape of a graph? J. Phys. A: Math. Gen. 34, 6061–6068 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    T. Kottos, U. Smilansky, Chaotic scattering on graphs. Phys. Rev. Lett. 85, 968–971 (2000)CrossRefGoogle Scholar
  6. 6.
    T. Kottos, U. Smilansky, Quantum graphs: a simple model for chaotic scattering. J. Phys. A Math. Gen. (Special Issue: Random Matrix Theory) 36(12), 3501–3524 (2003)Google Scholar
  7. 7.
    P. Kuchment, Graph models for waves in thin structures. Waves Random Media 12(4), R1–R24 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    P. Kurasov, Schrödinger operators on graphs and geometry I: essentially bounded potentials. J. Funct. Anal. 254, 934–953 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    P. Kurasov, M. Nowaczyk, Inverse spectral problem for quantum graphs. J. Phys. A: Math. Gen. 38, 4901–4915 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    P. Kurasov, F. Stenberg, On the inverse scattering problem on branching graphs. J. Phys. A: Math. Gen. 35, 101–121 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    V.A.Yurko, Inverse spectral problems for differential operators on spatial networks. Russ. Math. Surv. 71(3), 539–584 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversitá di Roma “La Sapienza”RomeItaly
  2. 2.Facoltá di IngegneriaUniversitá Telematica Internazionale “Uninettuno”RomeItaly

Personalised recommendations