Advertisement

Effective Non-linear Dynamics of Binary Condensates and Open Problems

  • Alessandro OlgiatiEmail author
Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 18)

Abstract

We report on a recent result concerning the effective dynamics for a mixture of Bose-Einstein condensates, a class of systems much studied in physics and receiving a large amount of attention in the recent literature in mathematical physics; for such models, the effective dynamics is described by a coupled system of non-linear Schödinger equations. After reviewing and commenting our proof in the mean-field regime from a previous paper, we collect the main details needed to obtain the rigorous derivation of the effective dynamics in the Gross-Pitaevskii scaling limit.

Keywords

Coupled nonlinear Schrödinger system Cubic NLS Effective non-linear evolution equations Gross-Pitaevskii scaling Manybody quantum dynamics Mean-field regime Mixture condensates Partial trace Reduced density matrix 

Notes

Acknowledgements

Partially supported by the 2014–2017 MIUR-FIR grant “Cond-Math: Condensed Matter and Mathematical Physics”, code RBFR13WAET and by Gruppo Nazionale per la Fisica Matematica (GNFM-INdAM).

References

  1. 1.
    I. Anapolitanos, M. Hott, D. Hundertmark, Derivation of the Hartree equation for compound Bose gases in the mean field limit (2017). arXiv:1702.00827Google Scholar
  2. 2.
    N. Benedikter, G. de Oliveira, B. Schlein, Quantitative derivation of the Gross-Pitaevskii equation. Commun. Pure Appl. Math. 68(8), 1399–1482 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    N. Benedikter, M. Porta, B. Schlein, Effective Evolution Equations from Quantum Dynamics. Springer Briefs in Mathematical Physics, vol. 7 (Springer, Cham, 2016)Google Scholar
  4. 4.
    L. Erdős, B. Schlein, H. Yau, Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167, 515–614 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    L. Erdős, B. Schlein, H. Yau, Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate. Ann. Math. 172(1), 291–370 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
  7. 7.
    T. Ho, Spinor Bose condensates in optical traps. Phys. Rev. Lett. 81(4), 742–745 (1998)CrossRefGoogle Scholar
  8. 8.
    M. Jeblick, N. Leopold, P. Pickl, Derivation of the time dependent Gross-Pitaevskii equation in two dimensions (2016). arXiv:1608.05326Google Scholar
  9. 9.
    A. Knowles, P. Pickl, A. Knowles, P. Pickl, Mean-field dynamics: singular potentials and rate of convergence. Commun. Math. Phys. 298(1), 101–138 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    A. Michelangeli, Role of scaling limits in the rigorous analysis of Bose-Einstein condensation. J. Math. Phys. 48, 102102 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    A. Michelangeli, Equivalent definitions of asymptotic 100% BEC. Nuovo Cimento Sec. B 123, 181–192 (2008)Google Scholar
  12. 12.
    A. Michelangeli, A. Olgiati, Mean-field quantum dynamics for a mixture of Bose-Einstein condensates. Anal. Math. Phys. (2016). doi: 10.1007/s13324-016-0147-3Google Scholar
  13. 13.
    A. Michelangeli, A. Olgiati, Gross-Pitaevskii non-linear dynamics for pseudo-spinor condensates. J. Nonlinear Math. Phys. 24(3), 426–464 (2017). doi:10.1080/14029251.2017.1346348. http://dx.doi.org/10.1080/14029251.2017.1346348 MathSciNetCrossRefGoogle Scholar
  14. 14.
    D. Mitrouskas, S. Petrat, P. Pickl, Bogoliubov corrections and trace norm convergence for the Hartree dynamics (2016). arXiv:1609.06264Google Scholar
  15. 15.
    G. Modugno, M. Modugno, F. Riboli, G. Roati, M. Inguscio, Two atomic species superfluid. Phys. Rev. Lett. 89(19), 190404 (2002)Google Scholar
  16. 16.
    C.J. Myatt, E.A. Burt, R.W. Ghrist, E.A. Cornell, C.E. Wieman, Production of two-overlapping Bose-Einstein condensates by sympathetic cooling. Phys. Rev. Lett. 78(4), 586–589 (1997)CrossRefGoogle Scholar
  17. 17.
    T. Ohmi, K. Machida, Bose-Einstein condensation with internal degrees of freedom in alkali atom gases. J. Phys. Soc. Jpn. 67, 1822–1825 (1998)CrossRefGoogle Scholar
  18. 18.
    A.Olgiati, Remarks on the derivation of Gross-Pitaevskii equation with magnetic Laplacian. Advances in Quantum Mechanics, vol. 18. Springer INdAM Series (2017), pp. 67–74Google Scholar
  19. 19.
    P. Pickl, Derivation of the time dependent Gross-Pitaevskii equation without positivity condition on the interaction. J. Stat. Phys. 140(1), 76–89 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    P. Pickl, A simple derivation of mean field limits for quantum systems. Lett. Math. Phys. 97(2), 151–164 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    P. Pickl, Derivation of the time dependent Gross-Pitaevskii equation with external fields. Rev. Math. Phys. 27(1), 1550003 (2015)Google Scholar
  22. 22.
    L. Pitaevskii, S. Stringari, Bose-Einstein Condensation and Superfluidity. International Series of Monographs on Physics (Oxford University Press, Oxford, 2016)Google Scholar
  23. 23.
    D.M. Stamper-Kurn, M.R. Andrews, A.P. Chikkatur, S. Inouye, H.J. Miesner, J. Stenger, W. Ketterle, Optical confinement of a Bose-Einstein condensate. Phys. Rev. Lett. 80(10), 2027–2030 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.SISSA - International School for Advanced StudiesTriesteItaly

Personalised recommendations