Skip to main content

Chern and Fu–Kane–Mele Invariants as Topological Obstructions

  • Chapter
  • First Online:
Advances in Quantum Mechanics

Part of the book series: Springer INdAM Series ((SINDAMS,volume 18))

Abstract

The use of topological invariants to describe geometric phases of quantum matter has become an essential tool in modern solid state physics. The first instance of this paradigmatic trend can be traced to the study of the quantum Hall effect, in which the Chern number underlies the quantization of the transverse Hall conductivity. More recently, in the framework of time-reversal symmetric topological insulators and quantum spin Hall systems, a new topological classification has been proposed by Fu, Kane and Mele, where the label takes value in \(\mathcal{Z}_{2}\).

We illustrate how both the Chern number \(c \in \mathbb{Z}\) and the Fu–Kane–Mele invariant \(\delta \in \mathbb{Z}_{2}\) of 2-dimensional topological insulators can be characterized as topological obstructions. Indeed, c quantifies the obstruction to the existence of a frame of Bloch states for the crystal which is both continuous and periodic with respect to the crystal momentum. Instead, δ measures the possibility to impose a further time-reversal symmetry constraint on the Bloch frame.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In continuous models, where H is a Schrödinger operator, these assumptions usually amount to asking that the electromagnetic potentials be infinitesimally Kato-small (possibly in the sense of quadratic forms) with respect to the kinetic part [26].

  2. 2.

    In order for (P2) and (P3) to be compatible with each other, one should also require that τ λ Θ = τ λ −1Θ for all λΛ. We will assume this in the following.

  3. 3.

    An easy way to realize this is the following. The connection matrices A μ Ψ(k) and A μ Φ(k) satisfy

    $$\displaystyle{\varPsi (k) \vartriangleleft A_{\mu }^{\varPsi }(k) = -\mathrm{i}\partial _{\mu }\varPsi (k),\quad \varPhi (k) \vartriangleleft A_{\mu }^{\varPhi }(k) = -\mathrm{i}\partial _{\mu }\varPhi (k).}$$

    As by definition we have Φ(k) = Ψ(k) ⊲ U(k), we obtain

    $$\displaystyle\begin{array}{rcl} \varPsi (k) \vartriangleleft (U(k)A_{\mu }^{\varPhi }(k))& =& \left (\varPsi (k) \vartriangleleft U(k)\right ) \vartriangleleft A_{\mu }^{\varPhi }(k) =\varPhi (k) \vartriangleleft A_{\mu }^{\varPhi }(k) = -\mathrm{i}\partial _{\mu }\varPhi (k) {}\\ & =& -\mathrm{i}\partial _{\mu }\left (\varPsi (k) \vartriangleleft U(k)\right ) = \left (-\mathrm{i}\partial _{\mu }\varPsi (k)\right ) \vartriangleleft U(k) +\varPsi (k) \vartriangleleft \left (-\mathrm{i}\partial _{\mu }U(k)\right ) {}\\ & =& \left (\varPsi (k) \vartriangleleft A_{\mu }^{\varPsi }(k)\right ) \vartriangleleft U(k) +\varPsi (k) \vartriangleleft \left (-\mathrm{i}\partial _{\mu }U(k)\right ) {}\\ & =& \varPsi (k) \vartriangleleft \left (A_{\mu }^{\varPsi }(k)U(k) -\mathrm{ i}\partial _{\mu }U(k)\right ) {}\\ \end{array}$$

    by which we deduce that

    $$\displaystyle{U(k)A_{\mu }^{\varPhi }(k) = A_{\mu }^{\varPsi }(k)U(k) -\mathrm{ i}\partial _{\mu }U(k).}$$
  4. 4.

    The action of any (anti)unitary operator on \(\mathbb{H}_{\text{f}}\) is lifted to \(\mathbb{H}_{\text{f}}^{m}\) componentwise.

  5. 5.

    The presence of the reshuffling matrix ɛ is needed to make the time-reversal symmetry condition self-consistent. This follows essentially from the fact that the antiunitary operator Θ defines by restriction a symplectic structure on the invariant subspace \(\mathop{\mathrm{Ran}}\nolimits P(k_{\sharp }) \subset \mathbb{ H}_{\text{f}}\) if \(k_{\sharp } \equiv -k_{\sharp }\bmod \varLambda\). Notice that in particular the rank m of P(k) must be even under (P3).

References

  1. J.E. Avron, R. Seiler, B. Simon, Charge deficiency, charge transport and comparison of dimensions. Commun. Math. Phys. 159, 399–422 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Bellissard, A. van Elst, H. Schulz-Baldes, The noncommutative geometry of the quantum Hall effect. J. Math. Phys. 35, 5373–5451 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. A.J. Bestwick, E.J. Fox, X. Kou, L. Pan, K.L. Wang, D. Goldhaber-Gordon, Precise quantization of the anomalous Hall effect near zero magnetic field. Phys. Rev. Lett. 114, 187201 (2015)

    Article  Google Scholar 

  4. Ch. Brouder, G. Panati, M. Calandra, Ch. Mourougane, N. Marzari, Exponential localization of Wannier functions in insulators. Phys. Rev. Lett. 98, 046402 (2007)

    Article  Google Scholar 

  5. C.Z. Chang et al., High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473 (2015)

    Article  Google Scholar 

  6. H.D. Cornean, I. Herbst, G. Nenciu, On the construction of composite Wannier functions. Ann. Henri Poincaré 17, 3361–3398 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. H.D. Cornean, D. Monaco, S. Teufel, Wannier functions and \(\mathbb{Z}_{2}\) invariants in time-reversal symmetric topological insulators. Rev. Math. Phys. 29, 1730001 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. G. De Nittis, K. Gomi, Classification of “Quaternionic” Bloch bundles. Commun. Math. Phys. 339, 1–55 (2015)

    Article  MATH  Google Scholar 

  9. B.A. Dubrovin, S.P. Novikov, A.T. Fomenko, Modern Geometry – Methods and Applications, Part II: The Geometry and Topology of Manifolds. Graduate Texts in Mathematics, vol. 93 (Springer, New York, 1985)

    Google Scholar 

  10. D. Fiorenza, D. Monaco, G. Panati, \(\mathbb{Z}_{2}\) invariants of topological insulators as geometric obstructions. Commun. Math. Phys. 343, 1115–1157 (2016)

    Google Scholar 

  11. L. Fu, C.L. Kane, Time reversal polarization and a Z 2 adiabatic spin pump. Phys. Rev. B 74, 195312 (2006)

    Article  Google Scholar 

  12. K. Fu, C.L. Kane, E.J. Mele, Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007)

    Article  Google Scholar 

  13. G.M. Graf, Aspects of the integer quantum hall effect, in Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, ed. by F. Gesztesy, P. Deift, C. Galvez, P. Perry, W. Schlag. Proceedings of Symposia in Pure Mathematics, vol. 76 (American Mathematical Society, Providence, RI, 2007), pp. 429–442

    Google Scholar 

  14. F.D.M. Haldane, Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2017 (1988)

    Google Scholar 

  15. M.Z. Hasan, C.L. Kane, Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)

    Article  Google Scholar 

  16. L.-K. Hua, On the theory of automorphic functions of a matrix variable I – Geometrical basis. Am. J. Math. 66, 470–488 (1944)

    Article  MATH  Google Scholar 

  17. D. Husemoller, Fibre Bundles, 3rd edn. Graduate Texts in Mathematics, vol. 20 (Springer, New York, 1994)

    Google Scholar 

  18. C.L. Kane, E.J. Mele, Z 2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005)

    Article  Google Scholar 

  19. T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1966)

    Book  MATH  Google Scholar 

  20. M. Kohmoto, Topological invariant and the quantization of the Hall conductance. Ann. Phys. 160, 343–354 (1985)

    Article  MathSciNet  Google Scholar 

  21. N. Marzari, A.A. Mostofi, J.R. Yates, I. Souza, D. Vanderbilt, Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419 (2012)

    Article  Google Scholar 

  22. D. Monaco, G. Panati, Symmetry and localization in periodic crystals: triviality of Bloch bundles with a Fermionic time-reversal symmetry. Acta Appl. Math. 137, 185–203 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Panati, Triviality of Bloch and Bloch-Dirac bundles. Ann. Henri Poincaré 8, 995–1011 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Panati, A. Pisante, Bloch bundles, Marzari-Vanderbilt functional and maximally localized Wannier functions. Commun. Math. Phys. 322, 835–875 (2013)

    MATH  Google Scholar 

  25. E. Prodan, H. Schulz-Baldes, Bulk and Boundary Invariants for Complex Topological Insulators: From K-theory to Physics. Mathematical Physics Studies (Springer, Basel, 2016)

    Book  MATH  Google Scholar 

  26. M. Reed, B. Simon, Methods of Modern Mathematical Physics. Volume IV: Analysis of Operators (Academic, New York, 1978)

    Google Scholar 

  27. D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982)

    Article  Google Scholar 

  28. K. von Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494 (1980)

    Article  Google Scholar 

Download references

Acknowledgements

The author is indebted with D. Fiorenza and G. Panati for valuable discussions, as well as with G. dell’​Antonio and A. Michelangeli for the invitation to the INdAM meeting “Contemporary Trends in the Mathematics of Quantum Mechanics”. Financial support from INdAM and from the German Science Foundation (DFG) within the GRK 1838 “Spectral theory and dynamics of quantum systems” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Monaco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Monaco, D. (2017). Chern and Fu–Kane–Mele Invariants as Topological Obstructions. In: Michelangeli, A., Dell'Antonio, G. (eds) Advances in Quantum Mechanics. Springer INdAM Series, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-58904-6_12

Download citation

Publish with us

Policies and ethics