Chern and Fu–Kane–Mele Invariants as Topological Obstructions

  • Domenico MonacoEmail author
Part of the Springer INdAM Series book series (SINDAMS, volume 18)


The use of topological invariants to describe geometric phases of quantum matter has become an essential tool in modern solid state physics. The first instance of this paradigmatic trend can be traced to the study of the quantum Hall effect, in which the Chern number underlies the quantization of the transverse Hall conductivity. More recently, in the framework of time-reversal symmetric topological insulators and quantum spin Hall systems, a new topological classification has been proposed by Fu, Kane and Mele, where the label takes value in \(\mathcal{Z}_{2}\).

We illustrate how both the Chern number \(c \in \mathbb{Z}\) and the Fu–Kane–Mele invariant \(\delta \in \mathbb{Z}_{2}\) of 2-dimensional topological insulators can be characterized as topological obstructions. Indeed, c quantifies the obstruction to the existence of a frame of Bloch states for the crystal which is both continuous and periodic with respect to the crystal momentum. Instead, δ measures the possibility to impose a further time-reversal symmetry constraint on the Bloch frame.


Chern numbers Fu–Kane–Mele invariants Obstruction theory Quantum hall effect Quantum spin hall effect Topological insulators 



The author is indebted with D. Fiorenza and G. Panati for valuable discussions, as well as with G. dell’​Antonio and A. Michelangeli for the invitation to the INdAM meeting “Contemporary Trends in the Mathematics of Quantum Mechanics”. Financial support from INdAM and from the German Science Foundation (DFG) within the GRK 1838 “Spectral theory and dynamics of quantum systems” is gratefully acknowledged.


  1. 1.
    J.E. Avron, R. Seiler, B. Simon, Charge deficiency, charge transport and comparison of dimensions. Commun. Math. Phys. 159, 399–422 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J. Bellissard, A. van Elst, H. Schulz-Baldes, The noncommutative geometry of the quantum Hall effect. J. Math. Phys. 35, 5373–5451 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A.J. Bestwick, E.J. Fox, X. Kou, L. Pan, K.L. Wang, D. Goldhaber-Gordon, Precise quantization of the anomalous Hall effect near zero magnetic field. Phys. Rev. Lett. 114, 187201 (2015)CrossRefGoogle Scholar
  4. 4.
    Ch. Brouder, G. Panati, M. Calandra, Ch. Mourougane, N. Marzari, Exponential localization of Wannier functions in insulators. Phys. Rev. Lett. 98, 046402 (2007)CrossRefGoogle Scholar
  5. 5.
    C.Z. Chang et al., High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473 (2015)CrossRefGoogle Scholar
  6. 6.
    H.D. Cornean, I. Herbst, G. Nenciu, On the construction of composite Wannier functions. Ann. Henri Poincaré 17, 3361–3398 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    H.D. Cornean, D. Monaco, S. Teufel, Wannier functions and \(\mathbb{Z}_{2}\) invariants in time-reversal symmetric topological insulators. Rev. Math. Phys. 29, 1730001 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    G. De Nittis, K. Gomi, Classification of “Quaternionic” Bloch bundles. Commun. Math. Phys. 339, 1–55 (2015)CrossRefzbMATHGoogle Scholar
  9. 9.
    B.A. Dubrovin, S.P. Novikov, A.T. Fomenko, Modern Geometry – Methods and Applications, Part II: The Geometry and Topology of Manifolds. Graduate Texts in Mathematics, vol. 93 (Springer, New York, 1985)Google Scholar
  10. 10.
    D. Fiorenza, D. Monaco, G. Panati, \(\mathbb{Z}_{2}\) invariants of topological insulators as geometric obstructions. Commun. Math. Phys. 343, 1115–1157 (2016)Google Scholar
  11. 11.
    L. Fu, C.L. Kane, Time reversal polarization and a Z 2 adiabatic spin pump. Phys. Rev. B 74, 195312 (2006)CrossRefGoogle Scholar
  12. 12.
    K. Fu, C.L. Kane, E.J. Mele, Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007)CrossRefGoogle Scholar
  13. 13.
    G.M. Graf, Aspects of the integer quantum hall effect, in Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, ed. by F. Gesztesy, P. Deift, C. Galvez, P. Perry, W. Schlag. Proceedings of Symposia in Pure Mathematics, vol. 76 (American Mathematical Society, Providence, RI, 2007), pp. 429–442Google Scholar
  14. 14.
    F.D.M. Haldane, Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2017 (1988)Google Scholar
  15. 15.
    M.Z. Hasan, C.L. Kane, Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)CrossRefGoogle Scholar
  16. 16.
    L.-K. Hua, On the theory of automorphic functions of a matrix variable I – Geometrical basis. Am. J. Math. 66, 470–488 (1944)CrossRefzbMATHGoogle Scholar
  17. 17.
    D. Husemoller, Fibre Bundles, 3rd edn. Graduate Texts in Mathematics, vol. 20 (Springer, New York, 1994)Google Scholar
  18. 18.
    C.L. Kane, E.J. Mele, Z 2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005)CrossRefGoogle Scholar
  19. 19.
    T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1966)CrossRefzbMATHGoogle Scholar
  20. 20.
    M. Kohmoto, Topological invariant and the quantization of the Hall conductance. Ann. Phys. 160, 343–354 (1985)MathSciNetCrossRefGoogle Scholar
  21. 21.
    N. Marzari, A.A. Mostofi, J.R. Yates, I. Souza, D. Vanderbilt, Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419 (2012)CrossRefGoogle Scholar
  22. 22.
    D. Monaco, G. Panati, Symmetry and localization in periodic crystals: triviality of Bloch bundles with a Fermionic time-reversal symmetry. Acta Appl. Math. 137, 185–203 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    G. Panati, Triviality of Bloch and Bloch-Dirac bundles. Ann. Henri Poincaré 8, 995–1011 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    G. Panati, A. Pisante, Bloch bundles, Marzari-Vanderbilt functional and maximally localized Wannier functions. Commun. Math. Phys. 322, 835–875 (2013)zbMATHGoogle Scholar
  25. 25.
    E. Prodan, H. Schulz-Baldes, Bulk and Boundary Invariants for Complex Topological Insulators: From K-theory to Physics. Mathematical Physics Studies (Springer, Basel, 2016)CrossRefzbMATHGoogle Scholar
  26. 26.
    M. Reed, B. Simon, Methods of Modern Mathematical Physics. Volume IV: Analysis of Operators (Academic, New York, 1978)Google Scholar
  27. 27.
    D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982)CrossRefGoogle Scholar
  28. 28.
    K. von Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494 (1980)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Eberhard Karls Universität TübingenTübingenGermany

Personalised recommendations