Basic Concepts of Semiconductor Tracking Detectors

  • Simon SpannagelEmail author
Part of the Springer Theses book series (Springer Theses)


Tracking detectors are a crucial component of any modern particle physics experiment, especially in the high-occupancy regimes at hadron colliders. They provide measurements for the determination of particle trajectories, from which their basic properties such as momentum and charge as well as origin and direction can be deducted.


  1. 1.
    K. Olive, Particle Data Group, Review of Particle Physics. Chin. Phys. C. 38(9), 090001 (2014). doi: 10.1088/1674-1137/38/9/090001
  2. 2.
    G. Lutz, Semiconductor Radiation Detectors: Device Physics (Springer, Berlin, 2007)Google Scholar
  3. 3.
    H. Spieler, Semiconductor Detector Systems, Semiconductor Science and Technology (Oxford University Press, Oxford, 2005)CrossRefGoogle Scholar
  4. 4.
    L. Rossi, P. Fischer, T. Rohe, N. Wermes, Pixel Detectors, Particle Acceleration and Detection (Springer, Berlin, 2006)Google Scholar
  5. 5.
    F. Hartmann, Evolution of Silicon Sensor Technology in Particle Physics (Springer, Berlin, 2008)Google Scholar
  6. 6.
    R. Mankel, Pattern recognition and event reconstruction in particle physics experiments. Rep. Prog. Phys. 67(4), 553 (2004). doi: 10.1088/0034-4885/67/4/R03, arXiv:physics/0402039
  7. 7.
    M. Moll, Radiation damage in silicon particle detectors: microscopic defects and macroscopic properties. Ph.D. thesis, Hamburg University, 1999Google Scholar
  8. 8.
    A. Junkes, Influence of radiation induced defect clusters on silicon particle detectors. Ph.D. thesis, Hamburg University, 2011Google Scholar
  9. 9.
    V. Van Lint, T. Flanagan, R. Leadon, J. Naber, Mechanisms of Radiation Effects in Electronic Materials, vol. 1 (Wiley-Interscience, United States, 1980)Google Scholar
  10. 10.
    A. Chilingarov, Temperature dependence of the current generated in Si bulk. J. Instrum. 8(10), P10003 (2013). doi: 10.1088/1748-0221/8/10/P10003
  11. 11.
    Y. Gornushkin et al., Tracking performance and radiation tolerance of monolithic active pixel sensors. Nucl. Instrum. Methods Phys. A 513(1–2), 291–295 (2003). doi: 10.1016/j.nima.2003.08.050 ADSCrossRefGoogle Scholar
  12. 12.
    H. Bichsel, Straggling in thin silicon detectors. Rev. Mod. Phys 60, 663–699 (1988). doi: 10.1103/RevModPhys.60.663 ADSCrossRefGoogle Scholar
  13. 13.
    L. Landau, On the energy loss of fast particles by ionization. J. Phys. (USSR) 8, 201–205 (1944)Google Scholar
  14. 14.
    P.V. Vavilov, Ionization losses of high-energy heavy particles. J. Exp. Theor. Phys. 5, 749–751 (1957). Zh. Eksp. Teor. Fiz. 32, 920 (1957)Google Scholar
  15. 15.
    W. Shockley, Currents to conductors induced by a moving point charge. J. Appl. Phys. 9(10), 635–636 (1938). doi: 10.1063/1.1710367 ADSCrossRefGoogle Scholar
  16. 16.
    S. Ramo, Currents induced by electron motion. Proc. IRE 27, 584–585 (1939). doi: 10.1109/JRPROC.1939.228757 CrossRefGoogle Scholar
  17. 17.
    C. Jacoboni, C. Canali, G. Ottaviani, A.A. Quaranta, A review of some charge transport properties of silicon. Solid-State Electron. 20(2), 77–89 (1977). doi: 10.1016/0038-1101(77)90054-5
  18. 18.
    Silicon (Si), Hall scattering factor, in Group IV Elements, IV-IV and III-V Compounds. Part b, ed. by O. Madelung, U. Rössler, M. Schulz, Landolt-Börnstein - Group III Condensed Matter, vol 41A1b (Springer, Berlin, 2002), pp. 1–4Google Scholar
  19. 19.
    R. Turchetta, Spatial resolution of silicon microstrip detectors. Nucl. Instrum. Methods Phys. A 335(1–2), 44–58 (1993). doi: 10.1016/0168-9002(93)90255-G ADSCrossRefGoogle Scholar
  20. 20.
    E. Belau et al., Charge collection in silicon strip detectors. Nucl. Instrum. Methods Phys. 214(2–3), 253–260 (1983). doi: 10.1016/0167-5087(83)90591-4 ADSCrossRefGoogle Scholar
  21. 21.
    T. Kawasaki et al., Measurement of the spatial resolution of wide-pitch silicon strip detectors with large incident angle. IEEE Trans. Nucl. Sci. 44, 708–712 (1997). doi: 10.1109/23.603738 ADSCrossRefGoogle Scholar
  22. 22.
    S. Cucciarelli, D. Kotlinski, Pixel Hit Reconstruction, CMS Internal Note CMS-IN-2004-014 (CERN, Geneva, 2004)Google Scholar
  23. 23.
    M. Swartz, Reconstructing Pixel Hits with Large Pixels, CMS Internal Note (CERN, Geneva, 2006)Google Scholar
  24. 24.
    V. Chiochia et al., A novel technique for the reconstruction and simulation of hits in the CMS pixel detector, in Nuclear Science Symposium Conference Record, 2008. NSS ’08. IEEE, pp. 1909–1912. Oct 2008. doi: 10.1109/NSSMIC.2008.4774762
  25. 25.
    M. Swartz et al., A new technique for the reconstruction, validation, and simulation of hits in the CMS pixel detector. PoS. Vertex 2007 (July 2007) 035. 37 pGoogle Scholar
  26. 26.
    CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker. J. Instrum. 9(10), P10009 (2014). doi: 10.1088/1748-0221/9/10/P10009, arXiv:1405.6569
  27. 27.
    V. Blobel, A new fast track-fit algorithm based on broken lines. Nucl. Instrum. Methods Phys. A 566(1), 14–17 (2006). doi: 10.1016/j.nima.2006.05.156 ADSCrossRefGoogle Scholar
  28. 28.
    C. Kleinwort, General broken lines as advanced track fitting method. Nucl. Instrum. Methods Phys. A 673, 107–110 (2012). doi: 10.1016/j.nima.2012.01.024 ADSCrossRefGoogle Scholar
  29. 29.
    R. Frühwirth, Application of Kalman filtering to track and vertex fitting. Nucl. Instrum. Meth. Phys. A 262(2–3), 444–450 (1987). doi: 10.1016/0168-9002(87)90887-4 ADSCrossRefGoogle Scholar
  30. 30.
    W. Hulsbergen, The global covariance matrix of tracks fitted with a Kalman filter and an application in detector alignment. Nucl. Instrum. Methods Phys. A 600(2), 471–477 (2009). doi: 10.1016/j.nima.2008.11.094 ADSCrossRefGoogle Scholar
  31. 31.
    V. Blobel, Software alignment for tracking detectors. Nucl. Instrum. Methods Phys. A 566(1), 5–13 (2006). doi: 10.1016/j.nima.2006.05.157 ADSCrossRefGoogle Scholar
  32. 32.
    V. Blobel, C. Kleinwort, F. Meier, Fast alignment of a complex tracking detector using advanced track models. Comput. Phys. Commun. 182(9), 1760–1763 (2011). doi: 10.1016/j.cpc.2011.03.017 ADSCrossRefGoogle Scholar
  33. 33.
    C.C. Paige, M.A. Saunders, Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12(4), 617–629 (1975). doi: 10.1137/0712047 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    CMS Collaboration, Alignment of the CMS tracker with LHC and cosmic ray data. J. Instrum. 9(6), P06009 (2014). doi: 10.1088/1748-0221/9/06/P06009, arXiv:1403.2286

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.European Organization for Nuclear Research (CERN)GenevaSwitzerland

Personalised recommendations