Skip to main content

Basic Concepts of Semiconductor Tracking Detectors

  • Chapter
  • First Online:
CMS Pixel Detector Upgrade and Top Quark Pole Mass Determination

Part of the book series: Springer Theses ((Springer Theses))

  • 246 Accesses

Abstract

Tracking detectors are a crucial component of any modern particle physics experiment, especially in the high-occupancy regimes at hadron colliders. They provide measurements for the determination of particle trajectories, from which their basic properties such as momentum and charge as well as origin and direction can be deducted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Olive, Particle Data Group, Review of Particle Physics. Chin. Phys. C. 38(9), 090001 (2014). doi:10.1088/1674-1137/38/9/090001

  2. G. Lutz, Semiconductor Radiation Detectors: Device Physics (Springer, Berlin, 2007)

    Google Scholar 

  3. H. Spieler, Semiconductor Detector Systems, Semiconductor Science and Technology (Oxford University Press, Oxford, 2005)

    Book  Google Scholar 

  4. L. Rossi, P. Fischer, T. Rohe, N. Wermes, Pixel Detectors, Particle Acceleration and Detection (Springer, Berlin, 2006)

    Google Scholar 

  5. F. Hartmann, Evolution of Silicon Sensor Technology in Particle Physics (Springer, Berlin, 2008)

    Google Scholar 

  6. R. Mankel, Pattern recognition and event reconstruction in particle physics experiments. Rep. Prog. Phys. 67(4), 553 (2004). doi:10.1088/0034-4885/67/4/R03, arXiv:physics/0402039

  7. M. Moll, Radiation damage in silicon particle detectors: microscopic defects and macroscopic properties. Ph.D. thesis, Hamburg University, 1999

    Google Scholar 

  8. A. Junkes, Influence of radiation induced defect clusters on silicon particle detectors. Ph.D. thesis, Hamburg University, 2011

    Google Scholar 

  9. V. Van Lint, T. Flanagan, R. Leadon, J. Naber, Mechanisms of Radiation Effects in Electronic Materials, vol. 1 (Wiley-Interscience, United States, 1980)

    Google Scholar 

  10. A. Chilingarov, Temperature dependence of the current generated in Si bulk. J. Instrum. 8(10), P10003 (2013). doi:10.1088/1748-0221/8/10/P10003

  11. Y. Gornushkin et al., Tracking performance and radiation tolerance of monolithic active pixel sensors. Nucl. Instrum. Methods Phys. A 513(1–2), 291–295 (2003). doi:10.1016/j.nima.2003.08.050

    Article  ADS  Google Scholar 

  12. H. Bichsel, Straggling in thin silicon detectors. Rev. Mod. Phys 60, 663–699 (1988). doi:10.1103/RevModPhys.60.663

    Article  ADS  Google Scholar 

  13. L. Landau, On the energy loss of fast particles by ionization. J. Phys. (USSR) 8, 201–205 (1944)

    Google Scholar 

  14. P.V. Vavilov, Ionization losses of high-energy heavy particles. J. Exp. Theor. Phys. 5, 749–751 (1957). Zh. Eksp. Teor. Fiz. 32, 920 (1957)

    Google Scholar 

  15. W. Shockley, Currents to conductors induced by a moving point charge. J. Appl. Phys. 9(10), 635–636 (1938). doi:10.1063/1.1710367

    Article  ADS  Google Scholar 

  16. S. Ramo, Currents induced by electron motion. Proc. IRE 27, 584–585 (1939). doi:10.1109/JRPROC.1939.228757

    Article  Google Scholar 

  17. C. Jacoboni, C. Canali, G. Ottaviani, A.A. Quaranta, A review of some charge transport properties of silicon. Solid-State Electron. 20(2), 77–89 (1977). doi:10.1016/0038-1101(77)90054-5

  18. Silicon (Si), Hall scattering factor, in Group IV Elements, IV-IV and III-V Compounds. Part b, ed. by O. Madelung, U. Rössler, M. Schulz, Landolt-Börnstein - Group III Condensed Matter, vol 41A1b (Springer, Berlin, 2002), pp. 1–4

    Google Scholar 

  19. R. Turchetta, Spatial resolution of silicon microstrip detectors. Nucl. Instrum. Methods Phys. A 335(1–2), 44–58 (1993). doi:10.1016/0168-9002(93)90255-G

    Article  ADS  Google Scholar 

  20. E. Belau et al., Charge collection in silicon strip detectors. Nucl. Instrum. Methods Phys. 214(2–3), 253–260 (1983). doi:10.1016/0167-5087(83)90591-4

    Article  ADS  Google Scholar 

  21. T. Kawasaki et al., Measurement of the spatial resolution of wide-pitch silicon strip detectors with large incident angle. IEEE Trans. Nucl. Sci. 44, 708–712 (1997). doi:10.1109/23.603738

    Article  ADS  Google Scholar 

  22. S. Cucciarelli, D. Kotlinski, Pixel Hit Reconstruction, CMS Internal Note CMS-IN-2004-014 (CERN, Geneva, 2004)

    Google Scholar 

  23. M. Swartz, Reconstructing Pixel Hits with Large Pixels, CMS Internal Note (CERN, Geneva, 2006)

    Google Scholar 

  24. V. Chiochia et al., A novel technique for the reconstruction and simulation of hits in the CMS pixel detector, in Nuclear Science Symposium Conference Record, 2008. NSS ’08. IEEE, pp. 1909–1912. Oct 2008. doi:10.1109/NSSMIC.2008.4774762

  25. M. Swartz et al., A new technique for the reconstruction, validation, and simulation of hits in the CMS pixel detector. PoS. Vertex 2007 (July 2007) 035. 37 p

    Google Scholar 

  26. CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker. J. Instrum. 9(10), P10009 (2014). doi:10.1088/1748-0221/9/10/P10009, arXiv:1405.6569

  27. V. Blobel, A new fast track-fit algorithm based on broken lines. Nucl. Instrum. Methods Phys. A 566(1), 14–17 (2006). doi:10.1016/j.nima.2006.05.156

    Article  ADS  Google Scholar 

  28. C. Kleinwort, General broken lines as advanced track fitting method. Nucl. Instrum. Methods Phys. A 673, 107–110 (2012). doi:10.1016/j.nima.2012.01.024

    Article  ADS  Google Scholar 

  29. R. Frühwirth, Application of Kalman filtering to track and vertex fitting. Nucl. Instrum. Meth. Phys. A 262(2–3), 444–450 (1987). doi:10.1016/0168-9002(87)90887-4

    Article  ADS  Google Scholar 

  30. W. Hulsbergen, The global covariance matrix of tracks fitted with a Kalman filter and an application in detector alignment. Nucl. Instrum. Methods Phys. A 600(2), 471–477 (2009). doi:10.1016/j.nima.2008.11.094

    Article  ADS  Google Scholar 

  31. V. Blobel, Software alignment for tracking detectors. Nucl. Instrum. Methods Phys. A 566(1), 5–13 (2006). doi:10.1016/j.nima.2006.05.157

    Article  ADS  Google Scholar 

  32. V. Blobel, C. Kleinwort, F. Meier, Fast alignment of a complex tracking detector using advanced track models. Comput. Phys. Commun. 182(9), 1760–1763 (2011). doi:10.1016/j.cpc.2011.03.017

    Article  ADS  Google Scholar 

  33. C.C. Paige, M.A. Saunders, Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12(4), 617–629 (1975). doi:10.1137/0712047

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. CMS Collaboration, Alignment of the CMS tracker with LHC and cosmic ray data. J. Instrum. 9(6), P06009 (2014). doi:10.1088/1748-0221/9/06/P06009, arXiv:1403.2286

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Spannagel .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Spannagel, S. (2017). Basic Concepts of Semiconductor Tracking Detectors. In: CMS Pixel Detector Upgrade and Top Quark Pole Mass Determination. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-58880-3_3

Download citation

Publish with us

Policies and ethics