Skip to main content

Simulation of Collision Events

  • Chapter
  • First Online:
  • 224 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Monte Carlo (MC) simulations as used in Chap. 5 to describe the response of a detector are also a highly important tool for the understanding and modeling of collision events. The interpretation of data recorded by the detectors and the extraction of physical parameters heavily rely on a well-understood theoretical modeling of the outcome of the scattering experiment. Due to the stochastic nature of quantum physics, the MC method described in Sect. 1.4 is a perfectly suited tool to simulate collision events, and is explored by a plethora of different event generators available to date.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.A. Dobbs et al., Les Houches Guidebook to Monte Carlo Generators for Hadron Collider Physics, 2004

    Google Scholar 

  2. M.L. Mangano, T.J. Stelzer, Tools for the simulation of hard hadronic collisions. Annu. Rev. Nucl. Part. Sci. 55(1), 555–588 (2005). doi:10.1146/annurev.nucl.55.090704.151505

    Article  ADS  Google Scholar 

  3. J. Alwall et al., MadGraph 5: going beyond. J. High Energy Phys. 2011(6) (2011). doi:10.1007/JHEP06(2011)128

  4. T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. J. High Energy Phys. 2006(5), 026(2006). doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175

  5. P. Skands, Tuning Monte Carlo generators: the Perugia tunes. Phys. Rev. D. 82, 074018 (2010). doi:10.1103/PhysRevD.82.074018

  6. G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes). J. High Energy Phys. 2001(1), 010 (2001). doi:10.1088/1126-6708/2001/01/010, arXiv:hep-ph/0011363

  7. S. Frixione, B.R. Webber, Matching NLO QCD computations and parton shower simulations. J. High Energy Phys. 2002(6), 029 (2002). doi:10.1088/1126-6708/2002/06/029, arXiv:hep-ph/0204244

  8. P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms. J. High Energy Phys. 2004(11), 040 (2004). doi:10.1088/1126-6708/2004/11/040

    Article  Google Scholar 

  9. S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method. J. High Energy Phys. 2007(11), 070 (2007). doi:10.1088/1126-6708/2007/11/070

    Article  Google Scholar 

  10. S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. J. High Energy Phys. 2010(6), (2010). doi:10.1007/JHEP06(2010)043

  11. E. Boos, et al., Generic User Process Interface for Event Generators, Physics at TeV Colliders II Workshop, (Les Houches, France, 2001) arXiv:hep-ph/0109068

  12. J. Alwall et al., A standard format for Les Houches event files. Comput. Phys. Commun. 176(4), 300–304 (2007). doi:10.1016/j.cpc.2006.11.010, arXiv:hep-ph/0609017

  13. V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP 3, 65–71 (1956). Zh. Eksp. Teor. Fiz. (1956) 30 87

    Google Scholar 

  14. B. Andersson, G. Gustafson, G. Ingelman, T. Sjöstrand, Parton fragmentation and string dynamics. Phys. Rep. 97(2–3), 31–145 (1983). doi:10.1016/0370-1573(83)90080-7

    Article  ADS  Google Scholar 

  15. B. Webber, A QCD model for jet fragmentation including soft gluon interference. Nucl. Phys. B 238(3), 492–528 (1984). doi:10.1016/0550-3213(84)90333-X

    Article  ADS  Google Scholar 

  16. G. Marchesini, B. Webber, Monte Carlo simulation of general hard processes with coherent QCD radiation. Nucl. Phys. B 310(3–4), 461–526 (1988). doi:10.1016/0550-3213(88)90089-2

  17. D. Amati, G. Veneziano, Preconfinement as a property of perturbative QCD. Phys. Lett. B 83(1), 87–92 (1979). doi:10.1016/0370-2693(79)90896-7

    Article  ADS  Google Scholar 

  18. S. Argyropoulos, T. Sjöstrand, Effects of color reconnection on \({\rm t}\bar{{\rm t}}\) final states at the LHC. J. High Energy Phys. 11, 43 (2014). doi:10.1007/JHEP11(2014)043, arXiv:1407.6653

  19. T. Sjöstrand, Colour reconnection and its effects on precise measurements at the LHC, in Proceedings, 48th Rencontres de Moriond on QCD and High Energy Interactions, pp. 247–251. 2013, arXiv:1310.8073

  20. S. Agostinelli et al., Geant4 - a simulation toolkit. Nucl. Instrum. Methods Phys. A 506(3), 250–303 (2003). doi:10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  21. P. Artoisenet, R. Frederix, O. Mattelaer, R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations. J. High Energy Phys. 2013(3) (2013). doi:10.1007/JHEP03(2013)015, arXiv:1212.3460

  22. J. Pumplin et al., New generation of Parton distributions with uncertainties from global QCD analysis. J. High Energy Phys. 2002(7), 012, (2002). doi:10.1088/1126-6708/2002/07/012, arXiv:hep-ph/0201195

  23. M.L. Mangano, M. Moretti, F. Piccinini, M. Treccani, Matching matrix elements and shower evolution for top-pair production in hadronic collisions. J. High Energy Phys. 0701(1), 013 (2007). doi:10.1088/1126-6708/2007/01/013, arXiv:hep-ph/0611129

  24. CMS Collaboration, Measurement of the underlying event activity at the LHC with \(\sqrt{s} = {7}\,{\rm TeV}\) and comparison with \(\sqrt{s} = {0.9}\,{\rm TeV}\). J. High Energy Phys. 2011(9) (2011). doi:10.1007/JHEP09(2011)109, arXiv:1107.0330

  25. M. Czakon, P. Fiedler, A. Mitov, Total top-Quark pair-production cross section at Hadron colliders through \(\cal{O}({\alpha }_{S}^{4})\), Phys. Rev. Lett. 110, 252004 (2013). doi:10.1103/PhysRevLett.110.252004, arXiv:1303.6254

  26. S. Alioli, S.-O. Moch, P. Uwer, Hadronic top-quark pair-production with one jet and parton showering. J. High Energy Phys. 01, 137 (2012). doi:10.1007/JHEP01(2012)137, arXiv:1110.5251

  27. H.-L. Lai et al., New parton distributions for collider physics. Phys. Rev. D 82 (2010) 074024. doi:10.1103/PhysRevD.82.074024, arXiv:1007.2241

  28. S. Alioli, Consultation concerning the POWHEG ttJ process, Private communication, 2015

    Google Scholar 

  29. S.D. Drell, T.-M. Yan, Massive Lepton-Pair Production in Hadron-Hadron Collisions at High Energies. Phys. Rev. Lett. 25, 316–320 (1970). doi:10.1103/PhysRevLett.25.316

  30. E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method. Eur. Phys. J. C 71(2), (2011). doi:10.1140/epjc/s10052-011-1547-z, arXiv:1009.2450

  31. K. Melnikov, F. Petriello, \(W\) Boson production cross section at the large hadron collider with \(\cal{O}({\alpha }_{s}^{2})\) corrections. Phys. Rev. Lett. 96, 231803(2006). doi:10.1103/PhysRevLett.96.231803, arXiv:hep-ph/0603182

  32. K. Melnikov, F. Petriello, Electroweak gauge boson production at hadron colliders through \(\cal{O}({\alpha }_{s}^{2})\). Phys. Rev. D. 74, 114017 (2006). doi:10.1103/PhysRevD.74.114017, arXiv:hep-ph/0609070

  33. N. Kidonakis, Two-loop soft anomalous dimensions for single top quark associated production with a \({W}^{-}\) or \({H}^{-}\). Phys. Rev. D. 82, 054018 (2010). doi:10.1103/PhysRevD.82.054018, arXiv:hep-ph/1005.4451

  34. J. Campbell, R. Ellis, C. Williams, Vector boson pair production at the LHC. J. High Energy Phys. 1107(7), 018 (2011). doi:10.1007/JHEP07(2011)018, arXiv:1105.0020

  35. J. Campbell, R. Ellis, \({\rm t}\bar{\rm t}{\rm W}^{\pm }\) production and decay at NLO. J. High Energy Phys. 52(7) (2012). doi:10.1007/JHEP07(2012)052, arXiv:1204.5678

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Spannagel .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Spannagel, S. (2017). Simulation of Collision Events. In: CMS Pixel Detector Upgrade and Top Quark Pole Mass Determination. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-58880-3_11

Download citation

Publish with us

Policies and ethics