Advertisement

Simulation of Collision Events

  • Simon SpannagelEmail author
Chapter
  • 172 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Monte Carlo (MC) simulations as used in Chap.  5 to describe the response of a detector are also a highly important tool for the understanding and modeling of collision events. The interpretation of data recorded by the detectors and the extraction of physical parameters heavily rely on a well-understood theoretical modeling of the outcome of the scattering experiment. Due to the stochastic nature of quantum physics, the MC method described in Sect.  1.4 is a perfectly suited tool to simulate collision events, and is explored by a plethora of different event generators available to date.

References

  1. 1.
    M.A. Dobbs et al., Les Houches Guidebook to Monte Carlo Generators for Hadron Collider Physics, 2004Google Scholar
  2. 2.
    M.L. Mangano, T.J. Stelzer, Tools for the simulation of hard hadronic collisions. Annu. Rev. Nucl. Part. Sci. 55(1), 555–588 (2005). doi: 10.1146/annurev.nucl.55.090704.151505 ADSCrossRefGoogle Scholar
  3. 3.
    J. Alwall et al., MadGraph 5: going beyond. J. High Energy Phys. 2011(6) (2011). doi: 10.1007/JHEP06(2011)128
  4. 4.
    T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. J. High Energy Phys. 2006(5), 026(2006). doi: 10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175
  5. 5.
    P. Skands, Tuning Monte Carlo generators: the Perugia tunes. Phys. Rev. D. 82, 074018 (2010). doi: 10.1103/PhysRevD.82.074018
  6. 6.
    G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes). J. High Energy Phys. 2001(1), 010 (2001). doi: 10.1088/1126-6708/2001/01/010, arXiv:hep-ph/0011363
  7. 7.
    S. Frixione, B.R. Webber, Matching NLO QCD computations and parton shower simulations. J. High Energy Phys. 2002(6), 029 (2002). doi: 10.1088/1126-6708/2002/06/029, arXiv:hep-ph/0204244
  8. 8.
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms. J. High Energy Phys. 2004(11), 040 (2004). doi: 10.1088/1126-6708/2004/11/040 CrossRefGoogle Scholar
  9. 9.
    S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method. J. High Energy Phys. 2007(11), 070 (2007). doi: 10.1088/1126-6708/2007/11/070 CrossRefGoogle Scholar
  10. 10.
    S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. J. High Energy Phys. 2010(6), (2010). doi: 10.1007/JHEP06(2010)043
  11. 11.
    E. Boos, et al., Generic User Process Interface for Event Generators, Physics at TeV Colliders II Workshop, (Les Houches, France, 2001) arXiv:hep-ph/0109068
  12. 12.
    J. Alwall et al., A standard format for Les Houches event files. Comput. Phys. Commun. 176(4), 300–304 (2007). doi: 10.1016/j.cpc.2006.11.010, arXiv:hep-ph/0609017
  13. 13.
    V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP 3, 65–71 (1956). Zh. Eksp. Teor. Fiz. (1956) 30 87Google Scholar
  14. 14.
    B. Andersson, G. Gustafson, G. Ingelman, T. Sjöstrand, Parton fragmentation and string dynamics. Phys. Rep. 97(2–3), 31–145 (1983). doi: 10.1016/0370-1573(83)90080-7 ADSCrossRefGoogle Scholar
  15. 15.
    B. Webber, A QCD model for jet fragmentation including soft gluon interference. Nucl. Phys. B 238(3), 492–528 (1984). doi: 10.1016/0550-3213(84)90333-X ADSCrossRefGoogle Scholar
  16. 16.
    G. Marchesini, B. Webber, Monte Carlo simulation of general hard processes with coherent QCD radiation. Nucl. Phys. B 310(3–4), 461–526 (1988). doi: 10.1016/0550-3213(88)90089-2
  17. 17.
    D. Amati, G. Veneziano, Preconfinement as a property of perturbative QCD. Phys. Lett. B 83(1), 87–92 (1979). doi: 10.1016/0370-2693(79)90896-7 ADSCrossRefGoogle Scholar
  18. 18.
    S. Argyropoulos, T. Sjöstrand, Effects of color reconnection on \({\rm t}\bar{{\rm t}}\) final states at the LHC. J. High Energy Phys. 11, 43 (2014). doi: 10.1007/JHEP11(2014)043, arXiv:1407.6653
  19. 19.
    T. Sjöstrand, Colour reconnection and its effects on precise measurements at the LHC, in Proceedings, 48th Rencontres de Moriond on QCD and High Energy Interactions, pp. 247–251. 2013, arXiv:1310.8073
  20. 20.
    S. Agostinelli et al., Geant4 - a simulation toolkit. Nucl. Instrum. Methods Phys. A 506(3), 250–303 (2003). doi: 10.1016/S0168-9002(03)01368-8 ADSCrossRefGoogle Scholar
  21. 21.
    P. Artoisenet, R. Frederix, O. Mattelaer, R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations. J. High Energy Phys. 2013(3) (2013). doi: 10.1007/JHEP03(2013)015, arXiv:1212.3460
  22. 22.
    J. Pumplin et al., New generation of Parton distributions with uncertainties from global QCD analysis. J. High Energy Phys. 2002(7), 012, (2002). doi: 10.1088/1126-6708/2002/07/012, arXiv:hep-ph/0201195
  23. 23.
    M.L. Mangano, M. Moretti, F. Piccinini, M. Treccani, Matching matrix elements and shower evolution for top-pair production in hadronic collisions. J. High Energy Phys. 0701(1), 013 (2007). doi: 10.1088/1126-6708/2007/01/013, arXiv:hep-ph/0611129
  24. 24.
    CMS Collaboration, Measurement of the underlying event activity at the LHC with \(\sqrt{s} = {7}\,{\rm TeV}\) and comparison with \(\sqrt{s} = {0.9}\,{\rm TeV}\). J. High Energy Phys. 2011(9) (2011). doi: 10.1007/JHEP09(2011)109, arXiv:1107.0330
  25. 25.
    M. Czakon, P. Fiedler, A. Mitov, Total top-Quark pair-production cross section at Hadron colliders through \(\cal{O}({\alpha }_{S}^{4})\), Phys. Rev. Lett. 110, 252004 (2013). doi: 10.1103/PhysRevLett.110.252004, arXiv:1303.6254
  26. 26.
    S. Alioli, S.-O. Moch, P. Uwer, Hadronic top-quark pair-production with one jet and parton showering. J. High Energy Phys. 01, 137 (2012). doi: 10.1007/JHEP01(2012)137, arXiv:1110.5251
  27. 27.
    H.-L. Lai et al., New parton distributions for collider physics. Phys. Rev. D 82 (2010) 074024. doi: 10.1103/PhysRevD.82.074024, arXiv:1007.2241
  28. 28.
    S. Alioli, Consultation concerning the POWHEG ttJ process, Private communication, 2015Google Scholar
  29. 29.
    S.D. Drell, T.-M. Yan, Massive Lepton-Pair Production in Hadron-Hadron Collisions at High Energies. Phys. Rev. Lett. 25, 316–320 (1970). doi: 10.1103/PhysRevLett.25.316
  30. 30.
    E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method. Eur. Phys. J. C 71(2), (2011). doi: 10.1140/epjc/s10052-011-1547-z, arXiv:1009.2450
  31. 31.
    K. Melnikov, F. Petriello, \(W\) Boson production cross section at the large hadron collider with \(\cal{O}({\alpha }_{s}^{2})\) corrections. Phys. Rev. Lett. 96, 231803(2006). doi: 10.1103/PhysRevLett.96.231803, arXiv:hep-ph/0603182
  32. 32.
    K. Melnikov, F. Petriello, Electroweak gauge boson production at hadron colliders through \(\cal{O}({\alpha }_{s}^{2})\). Phys. Rev. D. 74, 114017 (2006). doi: 10.1103/PhysRevD.74.114017, arXiv:hep-ph/0609070
  33. 33.
    N. Kidonakis, Two-loop soft anomalous dimensions for single top quark associated production with a \({W}^{-}\) or \({H}^{-}\). Phys. Rev. D. 82, 054018 (2010). doi: 10.1103/PhysRevD.82.054018, arXiv:hep-ph/1005.4451
  34. 34.
    J. Campbell, R. Ellis, C. Williams, Vector boson pair production at the LHC. J. High Energy Phys. 1107(7), 018 (2011). doi: 10.1007/JHEP07(2011)018, arXiv:1105.0020
  35. 35.
    J. Campbell, R. Ellis, \({\rm t}\bar{\rm t}{\rm W}^{\pm }\) production and decay at NLO. J. High Energy Phys. 52(7) (2012). doi: 10.1007/JHEP07(2012)052, arXiv:1204.5678

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.European Organization for Nuclear Research (CERN)GenevaSwitzerland

Personalised recommendations