Skip to main content

Introduction to Top Quark Physics and the Measurement

  • Chapter
  • First Online:
  • 244 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The third quark generation in the standard model (SM) of particle physics was predicted as an explanation for CP violation [1]. The lighter quark of the new generation, the bottom quark, was discovered in 1977 [2]. However, due to its large mass, the top quark was not measured until 1995, when the two Tevatron experiments Collision Detector at Fermilab (CDF) [3] and D0 [4] announced the discovery of a new quark in proton-antiproton collisions with a center-of-mass energy of \(\sqrt{s}={1.8}\,\text {TeV}\). The Tevatron accelerator was the only source of top quarks until the start-up of the LHC machine in 2010.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Kobayashi, T. Maskawa, CP-violation in the renormalizable theory of weak interaction. Progr. Theor. Phys. 49(2), 652–657 (1973). doi:10.1143/PTP.49.652

    Article  ADS  Google Scholar 

  2. S.W. Herb et al., Observation of a dimuon resonance at 9.5 GeV in 400-GeV proton-nucleus collisions. Phys. Rev. Lett 39, 252–255 (1977). doi:10.1103/PhysRevLett.39.252

    Article  ADS  Google Scholar 

  3. CDF Collaboration, Observation of top quark production in \(\overline{\mathit{p}}\mathit{p}\) collisions with the collider detector at fermilab, Phys. Rev. Lett. 74, 2626–2631 (1995). doi:10.1103/PhysRevLett.74.2626, arXiv:hep-ex/9503002

  4. D0 Collaboration, Observation of the top quark. Phys. Rev. Lett. 74, 2632–2637 (1995). doi:10.1103/PhysRevLett.74.2632, arXiv:hep-ex/9503003

  5. W. Bernreuther, Top-quark physics at the LHC. J. Phys. G, 35(8), 083001 (2008). doi:10.1088/0954-3899/35/8/083001, arXiv:0805.1333

  6. J.R. Incandela, A. Quadt, W. Wagner, D. Wicke, Status and prospects of top-quark physics. Prog. Part. Nucl. Phys. 63(2), 239–292 (2009). doi:10.1016/j.ppnp.2009.08.001, arXiv:0904.2499

  7. ATLAS, CDF, CMS, and D0 Collaboration, First combination of Tevatron and LHC measurements of the top-quark mass, Analysis Summary ATLAS-CONF-2014-008, CDF-NOTE-11071, CMS-PAS-TOP-13-014, D0-NOTE-6416, CERN, Geneva (2014), arXiv:1403.4427

  8. CMS Collaboration, Measurement of the top quark mass using proton-proton data at \(\sqrt{s} = 7\) and 8 TeV, Technical Report CMS-TOP-14-022, CERN (2015), arXiv:1509.04044

  9. K. Olive, Particle Data Group, Review of particle physics. Chin. Phys. C 38(9), 090001 (2014). doi:10.1088/1674-1137/38/9/090001

  10. M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC. Eur. Phys. J. C, 74(9) (2014). doi:10.1140/epjc/s10052-014-3046-5, arXiv:1407.3792

  11. S. Alekhin, A. Djouadi, S. Moch, The Top quark and Higgs boson masses and the stability of the electroweak vacuum. Phys. Lett. B 716(1), 214–219 (2012). doi:10.1016/j.physletb.2012.08.024, arXiv:1207.0980

  12. S. Moch et al., High precision fundamental constants at the TeV scale, arXiv:1405.4781

  13. U. Langenfeld, S. Moch, P. Uwer, Measuring the running top-quark mass, Phys. Rev. D, 80, 054009 (2009). doi:10.1103/PhysRevD.80.054009, arXiv:0906.5273

  14. C.M.S. Collaboration, Measurement of the \({\rm t}\bar{{\rm t}}\) production cross section in the \(e\mu \) channel in pp collisions at \(\sqrt{s} = 7\) and 8 TeV, Technical Report CMS-PAS-TOP-13-004, CERN, Geneva (2013)

    Google Scholar 

  15. W.A. Bardeen, A.J. Buras, D.W. Duke, T. Muta, Deep-inelastic scattering beyond the leading order in asymptotically free gauge theories. Phys. Rev. D 18, 3998–4017 (1978). doi:10.1103/PhysRevD.18.3998

    Article  ADS  Google Scholar 

  16. P. Marquard, A.V. Smirnov, V.A. Smirnov, M. Steinhauser, Quark mass relations to four-loop order in perturbative QCD. Phys. Rev. Lett. 114, 142002 (2015). doi:10.1103/PhysRevLett.114.142002, arXiv:1502.01030

  17. S. Alioli et al., A new observable to measure the top-quark mass at hadron colliders. Eur. Phys. J. C 73, 2438 (2013). doi:10.1140/epjc/s10052-013-2438-2, arXiv:1303.6415

  18. S. Alioli, S.-O. Moch, P. Uwer, Hadronic top-quark pair-production with one jet and parton showering. J. High Energy Phys. 01, 137 (2012). doi:10.1007/JHEP01(2012)137, arXiv:1110.5251

  19. ATLAS Collaboration, Determination of the top-quark pole mass using \({\rm t}\bar{{\rm t}}\)-jet events collected with the ATLAS experiment in 7 TeV \(pp\) collisions. J. High Energy Phys. 2015(10) (2015). doi:10.1007/JHEP10(2015)121, arXiv:1507.01769

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Spannagel .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Spannagel, S. (2017). Introduction to Top Quark Physics and the Measurement. In: CMS Pixel Detector Upgrade and Top Quark Pole Mass Determination. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-58880-3_10

Download citation

Publish with us

Policies and ethics