Advertisement

Introduction to Top Quark Physics and the Measurement

  • Simon SpannagelEmail author
Chapter
  • 183 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The third quark generation in the standard model (SM) of particle physics was predicted as an explanation for CP violation [1]. The lighter quark of the new generation, the bottom quark, was discovered in 1977 [2]. However, due to its large mass, the top quark was not measured until 1995, when the two Tevatron experiments Collision Detector at Fermilab (CDF) [3] and D0 [4] announced the discovery of a new quark in proton-antiproton collisions with a center-of-mass energy of \(\sqrt{s}={1.8}\,\text {TeV}\). The Tevatron accelerator was the only source of top quarks until the start-up of the LHC machine in 2010.

Keywords

Tevatron Accelerator Generation Quarks Proton-antiproton Collisions Bottom Quark Quark-antiquark Annihilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Kobayashi, T. Maskawa, CP-violation in the renormalizable theory of weak interaction. Progr. Theor. Phys. 49(2), 652–657 (1973). doi: 10.1143/PTP.49.652 ADSCrossRefGoogle Scholar
  2. 2.
    S.W. Herb et al., Observation of a dimuon resonance at 9.5 GeV in 400-GeV proton-nucleus collisions. Phys. Rev. Lett 39, 252–255 (1977). doi: 10.1103/PhysRevLett.39.252 ADSCrossRefGoogle Scholar
  3. 3.
    CDF Collaboration, Observation of top quark production in \(\overline{\mathit{p}}\mathit{p}\) collisions with the collider detector at fermilab, Phys. Rev. Lett. 74, 2626–2631 (1995). doi: 10.1103/PhysRevLett.74.2626, arXiv:hep-ex/9503002
  4. 4.
    D0 Collaboration, Observation of the top quark. Phys. Rev. Lett. 74, 2632–2637 (1995). doi: 10.1103/PhysRevLett.74.2632, arXiv:hep-ex/9503003
  5. 5.
    W. Bernreuther, Top-quark physics at the LHC. J. Phys. G, 35(8), 083001 (2008). doi: 10.1088/0954-3899/35/8/083001, arXiv:0805.1333
  6. 6.
    J.R. Incandela, A. Quadt, W. Wagner, D. Wicke, Status and prospects of top-quark physics. Prog. Part. Nucl. Phys. 63(2), 239–292 (2009). doi: 10.1016/j.ppnp.2009.08.001, arXiv:0904.2499
  7. 7.
    ATLAS, CDF, CMS, and D0 Collaboration, First combination of Tevatron and LHC measurements of the top-quark mass, Analysis Summary ATLAS-CONF-2014-008, CDF-NOTE-11071, CMS-PAS-TOP-13-014, D0-NOTE-6416, CERN, Geneva (2014), arXiv:1403.4427
  8. 8.
    CMS Collaboration, Measurement of the top quark mass using proton-proton data at \(\sqrt{s} = 7\) and 8 TeV, Technical Report CMS-TOP-14-022, CERN (2015), arXiv:1509.04044
  9. 9.
    K. Olive, Particle Data Group, Review of particle physics. Chin. Phys. C 38(9), 090001 (2014). doi: 10.1088/1674-1137/38/9/090001
  10. 10.
    M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC. Eur. Phys. J. C, 74(9) (2014). doi: 10.1140/epjc/s10052-014-3046-5, arXiv:1407.3792
  11. 11.
    S. Alekhin, A. Djouadi, S. Moch, The Top quark and Higgs boson masses and the stability of the electroweak vacuum. Phys. Lett. B 716(1), 214–219 (2012). doi: 10.1016/j.physletb.2012.08.024, arXiv:1207.0980
  12. 12.
    S. Moch et al., High precision fundamental constants at the TeV scale, arXiv:1405.4781
  13. 13.
    U. Langenfeld, S. Moch, P. Uwer, Measuring the running top-quark mass, Phys. Rev. D, 80, 054009 (2009). doi: 10.1103/PhysRevD.80.054009, arXiv:0906.5273
  14. 14.
    C.M.S. Collaboration, Measurement of the \({\rm t}\bar{{\rm t}}\) production cross section in the \(e\mu \) channel in pp collisions at \(\sqrt{s} = 7\) and 8 TeV, Technical Report CMS-PAS-TOP-13-004, CERN, Geneva (2013)Google Scholar
  15. 15.
    W.A. Bardeen, A.J. Buras, D.W. Duke, T. Muta, Deep-inelastic scattering beyond the leading order in asymptotically free gauge theories. Phys. Rev. D 18, 3998–4017 (1978). doi: 10.1103/PhysRevD.18.3998 ADSCrossRefGoogle Scholar
  16. 16.
    P. Marquard, A.V. Smirnov, V.A. Smirnov, M. Steinhauser, Quark mass relations to four-loop order in perturbative QCD. Phys. Rev. Lett. 114, 142002 (2015). doi: 10.1103/PhysRevLett.114.142002, arXiv:1502.01030
  17. 17.
    S. Alioli et al., A new observable to measure the top-quark mass at hadron colliders. Eur. Phys. J. C 73, 2438 (2013). doi: 10.1140/epjc/s10052-013-2438-2, arXiv:1303.6415
  18. 18.
    S. Alioli, S.-O. Moch, P. Uwer, Hadronic top-quark pair-production with one jet and parton showering. J. High Energy Phys. 01, 137 (2012). doi: 10.1007/JHEP01(2012)137, arXiv:1110.5251
  19. 19.
    ATLAS Collaboration, Determination of the top-quark pole mass using \({\rm t}\bar{{\rm t}}\)-jet events collected with the ATLAS experiment in 7 TeV \(pp\) collisions. J. High Energy Phys. 2015(10) (2015). doi: 10.1007/JHEP10(2015)121, arXiv:1507.01769

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.European Organization for Nuclear Research (CERN)GenevaSwitzerland

Personalised recommendations