Advertisement

Introduction to Particle Physics at Hadron Colliders

  • Simon SpannagelEmail author
Chapter
  • 183 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter introduces the relevant theoretical background required for particle physics at hadron colliders. Section 1.1 presents the standard model of particle physics, a theoretical model on which the current understanding of high-energy physics is based. The SM attempts to explain matter and interactions based on elementary particles and serves as foundation and reference for new measurements.

References

  1. 1.
    ATLAS Collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716(1), 1–29 (2012). doi: 10.1016/j.physletb.2012.08.020
  2. 2.
    C.M.S. Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716(1), 30–61 (2012). doi: 10.1016/j.physletb.2012.08.021 ADSCrossRefGoogle Scholar
  3. 3.
    D. Griffiths, Introduction to Elementary Particles (Wiley-VCH, New York, 2008)zbMATHGoogle Scholar
  4. 4.
    K. Olive, Particle Data Group, Review of particle physics. Chin. Phys. C 38(9), 090001 (2014). doi: 10.1088/1674-1137/38/9/090001
  5. 5.
    P.A.M. Dirac, The quantum theory of the electron. Proc. R. Soc. A 117(778), 610–624 (1928)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    C.D. Anderson, The positive electron. Phys. Rev. 43, 491–494 (1933). doi: 10.1103/PhysRev.43.491
  7. 7.
    LHCb Collaboration, Observation of \(J/\psi p\) resonances consistent with pentaquark states in \({\rm \Lambda }_{b}^{0}\rightarrow J/\psi {K}^{-}p\) decays. Phys. Rev. Lett. 115, 072001 (2015). doi: 10.1103/PhysRevLett.115.072001, arXiv:1507.03414
  8. 8.
    E. Fermi, Versuch einer Theorie der \(\beta \)-Strahlen. I. Z. Phys. 88(3–4), 161–177 (1934). doi: 10.1007/BF01351864 ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    S.L. Glashow, Partial-symmetries of weak interactions. Nucl. Phys. 22(4), 579–588 (1961). doi: 10.1016/0029-5582(61)90469-2 CrossRefGoogle Scholar
  10. 10.
    S. Weinberg, A model of Leptons. Phys. Rev. Lett. 19, 1264–1266 (1967). doi: 10.1103/PhysRevLett.19.1264 ADSCrossRefGoogle Scholar
  11. 11.
    B. Naroska, \(e^+e^-\) physics with the jade detector at PETRA. Phys. Rep. 148(2–3), 67–215 (1987). doi: 10.1016/0370-1573(87)90031-7 ADSCrossRefGoogle Scholar
  12. 12.
    ALEPH, DELPHI, L3, OPAL, SLD Collaborations, The LEP Electroweak Working Group, and The SLD Electroweak and Heavy Flavour Groups, Precision electroweak measurements on the Z resonance. Phys. Rep. 427(5–6), 257–454 (2006). doi: 10.1016/j.physrep.2005.12.006, arXiv:hep-ex/0509008
  13. 13.
    C.S. Wu et al., Experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413–1415 (1957). doi: 10.1103/PhysRev.105.1413 ADSCrossRefGoogle Scholar
  14. 14.
    J.H. Christenson, J.W. Cronin, V.L. Fitch, R. Turlay, Evidence for the \(2\pi \) decay of the \(K_{2}^{0}\) meson. Phys. Rev. Lett. 13, 138–140 (1964). doi: 10.1103/PhysRevLett.13.138 ADSCrossRefGoogle Scholar
  15. 15.
    N. Cabibbo, Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531–533 (1963). doi: 10.1103/PhysRevLett.10.531 ADSCrossRefGoogle Scholar
  16. 16.
    M. Kobayashi, T. Maskawa, CP-violation in the renormalizable theory of weak interaction. Progr. Theor. Phys. 49(2), 652–657 (1973). doi: 10.1143/PTP.49.652 ADSCrossRefGoogle Scholar
  17. 17.
    SNO Collaboration, Measurement of the rate of \({\nu }_{e}+\mathit{d}\rightarrow \mathit{p}+\mathit{p}+{\mathit{e}}^{-}\) interactions produced by \(^{8}B\) solar neutrinos at the sudbury neutrino observatory. Phys. Rev. Lett. 87, 071301 (2001). doi: 10.1103/PhysRevLett.87.071301, arXiv:nucl-ex/0106015
  18. 18.
    Super-Kamiokande Collaboration, Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998). doi: 10.1103/PhysRevLett.81.1562, arXiv:hep-ex/9807003
  19. 19.
    Nobel Media AB, The 2015 Nobel Prize in Physics - Press Release, Nobelprize.org, http://www.nobelprize.org/nobel_prizes/physics/laureates/2015. Accessed 24 Oct 2015
  20. 20.
    Z. Maki, M. Nakagawa, S. Sakata, Remarks on the unified model of elementary particles. Progr. Theor. Phys. 28(5), 870–880 (1962). doi: 10.1143/PTP.28.870, arXiv:http://ptp.oxfordjournals.org/content/28/5/870.full.pdf+html
  21. 21.
    B. Delamotte, A hint of renormalization. Am. J. Phys. 72(2), 170–184 (2004). doi: 10.1119/1.1624112 ADSCrossRefGoogle Scholar
  22. 22.
    F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964). doi: 10.1103/PhysRevLett.13.321
  23. 23.
    P. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964). doi: 10.1103/PhysRevLett.13.508
  24. 24.
    G. Guralnik, C. Hagen, T. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585–587 (1964). doi: 10.1103/PhysRevLett.13.585 ADSCrossRefGoogle Scholar
  25. 25.
    J. Goldstone, A. Salam, S. Weinberg, Broken symmetries. Phys. Rev. 127, 965–970 (1962). doi: 10.1103/PhysRev.127.965 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    ATLAS and CMS Collaborations, Combined measurement of the Higgs boson mass in \(pp\) collisions at \(\sqrt{s} = 7\) and 8 TeV with the ATLAS and CMS experiments. Phys. Rev. Lett. 114, 191803 (2015). doi: 10.1103/PhysRevLett.114.191803, arXiv:1503.07589
  27. 27.
    D. Clowe et al., A direct empirical proof of the existence of dark matter. Astrophys. J. 648(2), L109 (2006). doi: 10.1086/508162, arXiv:astro-ph/0608407
  28. 28.
    A. Refregier, weak gravitational lensing by large-scale structure. Annu. Rev. Astron. Astrophys. 41(1), 645–668 (2003). doi: 10.1146/annurev.astro.41.111302.102207, arXiv:astro-ph/0307212
  29. 29.
    WMAP Collaboration, Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: sky maps, systematic errors, and basic results. Astrophys. J. Suppl. 192(2), 14 (2011). doi: 10.1088/0067-0049/192/2/14, arXiv:1001.4744
  30. 30.
    WMAP Collaboration, Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 192(2), 18 (2011). doi: 10.1088/0067-0049/192/2/18, arXiv:1001.4538
  31. 31.
    Supernova Search Team Collaboration, Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116(3), 1009 (1998). doi: 10.1086/300499, arXiv:astro-ph/9805201
  32. 32.
    Supernova Cosmology Project Collaboration, Measurements of \(\Omega \) and \(\Lambda \) from 42 high-redshift supernovae. Astrophys. J. 517(2), 565 (1999). doi: 10.1086/307221, arXiv:astro-ph/9812133
  33. 33.
    Nobel Media AB, The 2011 Nobel Prize in Physics - Press Release, Nobelprize.org, http://www.nobelprize.org/nobel_prizes/physics/laureates/2011. Accessed 2 Dec 2015
  34. 34.
    S.P. Martin, A Supersymmetry Primer, Chap. 1 (World Scientific, Singapore, 2011), pp. 1–153. doi: 10.1142/9789814307505_0001, arXiv:hep-ph/9709356
  35. 35.
    M. Schmaltz, D. Tucker-Smith, Little Higgs theories. Annu. Rev. Nucl. Part. Sci. 55(1), 229–270 (2005). doi: 10.1146/annurev.nucl.55.090704.151502, arXiv:hep-ph/0502182
  36. 36.
    B. Gripaios, Lectures on Physics Beyond the Standard Model, arXiv:1503.02636
  37. 37.
    J. Gao et al., The CT10 NNLO global analysis of QCD. Phys. Rev. D 89, 033009 (2014). doi: 10.1103/PhysRevD.89.033009, arXiv:1302.6246
  38. 38.
    V.N. Gribov, L.N. Lipatov, Deep inelastic \(ep\) scattering in perturbation theory. Sov. J. Nucl. Phys. 15, 438–450 (1972)Google Scholar
  39. 39.
    G. Altarelli, G. Parisi, Asymptotic freedom in parton language. Nucl. Phys. B 126(2), 298–318 (1977). doi: 10.1016/0550-3213(77)90384-4 ADSCrossRefGoogle Scholar
  40. 40.
    Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and \(e^+e^-\) annihilation by perturbation theory in quantum chromodynamics. Sov. Phys. JETP 46, 641–653 (1977)ADSGoogle Scholar
  41. 41.
    A. Martin, W. Stirling, R. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63(2), 189–285 (2009). doi: 10.1140/epjc/s10052-009-1072-5, arXiv:0901.0002
  42. 42.
    H1 and ZEUS Collaboration, Combined measurement and QCD analysis of the inclusive \(e^{\pm }p\) scattering cross sections at HERA. J. High Energy Phys. 2010(1) (2010). doi: 10.1007/JHEP01(2010)109, arXiv:0911.0884
  43. 43.
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis. J. High Energy Phys. 2002(07), 012 (2002). doi: 10.1088/1126-6708/2002/07/012, arXiv:hep-ph/0201195
  44. 44.
    H.-L. Lai et al., New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010). doi: 10.1103/PhysRevD.82.074024, arXiv:1007.2241
  45. 45.
    S.D. Drell, T.-M. Yan, Massive lepton-pair production in hadron-hadron collisions at high energies. Phys. Rev. Lett. 25, 316–320 (1970). doi: 10.1103/PhysRevLett.25.316
  46. 46.
    T. Sjöstrand, M. van Zijl, A multiple-interaction model for the event structure in hadron collisions. Phys. Rev. D 36, 2019–2041 (1987). doi: 10.1103/PhysRevD.36.2019
  47. 47.
    R. Wigmans, Calorimetry. AIP Conf. Proc. 674(1), 144–168 (2003). doi: 10.1063/1.1604077 ADSCrossRefGoogle Scholar
  48. 48.
    N. Metropolis, S. Ulam, The Monte Carlo method. JASA 44(247), 335–341 (1949). doi: 10.1080/01621459.1949.10483310 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.European Organization for Nuclear Research (CERN)GenevaSwitzerland

Personalised recommendations