Skip to main content

Multilayer Radial Basis Function Kernel Machine

  • Conference paper
  • First Online:
Wireless Mobile Communication and Healthcare (MobiHealth 2016)

Abstract

Radial Basis Function (RBF) Kernel Machines have become commonly used in Machine Learning tasks, but they contain certain flaws (e.g., some suffer from fast growth in the number of learning parameters while predicting data with large number of variations). Besides, Kernel Machines with single hidden layers lack mechanisms for feature selection in multidimensional data space, and machine learning tasks become intractable. This paper investigates “deep learning” architecture composed of multilayered adaptive non-linear components – Multilayer RBF Kernel Machine – to address RBF limitations. Three different approaches of features selection and dimensionality reduction to train RBF based on Multilayer Kernel Learning are explored, and comparisons made between them in terms of accuracy, performance and computational complexity. Results show that the multilayered system produces better results than single-layer architecture. In particular, developing decision support system in term of data mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Orr, M.J.L.: Introduction to radial basis function network (1996). http://www.cc.gatech.edu/~isbell/tutorials/rbf-intro.pdf

  2. Orr, M.J.L.: Recent advances in radial basis function networks (1999). http://www.anc.ed.ac.uk/rbf/papers/recad.ps

  3. Kubat, M.: Decision trees can initialize radial basis function networks. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.43.6674&rep=rep1&type=pdf

  4. Schwenker, F., Kestler, H.A., Palm, G.: Three learning phases for radial-basis-function networks (2001). http://sci2s.ugr.es/keel/pdf/specific/articulo/skg01.pdf

  5. Kohonen, T.: Learning vector quantization. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 537–540. MIT Press, Cambridge (1995)

    Google Scholar 

  6. Schwenker F., Kestler H.A., Palm, G.: 3-D Visual Object Classification with Hierarchical Radial Basis Function Networks. http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui/Ulmer_Informatik_Berichte/2001/UIB_2001-02.pdf

  7. Cortes, C., Vapnik, V.: Support-vector networks (1995). http://image.diku.dk/imagecanon/material/cortes_vapnik95.pdf

  8. Wettschereck, D., Dietterich, D.: Improving the performance of the radial basis function networks by learning center locations. http://papers.nips.cc/paper/544-improving-the-performance-of-radial-basis-function-networks-by-learning-center-locations.pdf

  9. Chen, S., Grant, P.M., Cowan, C.F.N.: Orthogonal least-squares algorithm for training multi-output radial basis function networks (1992). https://cours.etsmtl.ca/sys828/REFS/B3/Chen_IEEE1992.pdf

  10. Gomm, B.J., Yu, D.L.: Selecting radial basis function network centers with recursive orthogonal least-squares training (2000). http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=839002

  11. De Castro, L.N., Von Zuben, F.J.: An immunological approach to initialize centers of radial basis function neural networks (2001). http://www.dca.fee.unicamp.br/~vonzuben/research/lnunes_dout/artigos/cbrn01.pdf

  12. Yousef, R., el Hindi, K.: Training radial basis function networks using reduced sets as center points. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.4275&rep=rep1&type=pdf

  13. Vachkov, G., Stoyanov, V., Christova, N.: Growing RBF network models for solving nonlinear approximation and classification problems (2015). http://www.scs-europe.net/dlib/2015/ecms2015acceptedpapers/0481-is_ECMS2015_0053.pdf

  14. Billing, A.S., Zheng, G.L.: Radial basis function network configuration using genetic algorithms. http://www.sciencedirect.com/science/article/pii/089360809500029Y

  15. Fasshauer, G.E., Zhang, J.G.: On choosing “optimal” shape parameters for RBF approximation. http://www.math.iit.edu/~fass/Dolomites.pdf

  16. Hoffmann, G.A.: Adaptive transfer functions in radial basis function (RBF) networks. In: Bubak, M., Albada, G.D., Sloot, Peter M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3037, pp. 682–686. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24687-9_102. http://www.citemaster.net/get/a719201c-fb59-11e3-8a7f-00163e009cc7/hoffmann04adaptive.pdf

    Chapter  Google Scholar 

  17. Duch, W., Jankowski, N.: Transfer functions: hidden probabilities for better neural networks. https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2001-400.pdf

  18. Dorffner, G.: A unified framework for MLPs and RBFNs: introducing conic section functions networks. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.7264&rep=rep1&type=pdf

  19. Mongillo, M.: Choosing basis functions and shape parameters for radial basis function methods. https://www.siam.org/students/siuro/vol4/S01084.pdf

  20. Webb, R.A., Shennon, S.: Shape-adaptive radial basis functions. http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=728359

  21. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. http://www.cl.uni-heidelberg.de/courses/ws14/deepl/BengioETAL12.pdf

  22. Wang, X.: The application of deep kernel machines to various types of data. https://uwaterloo.ca/computational-mathematics/sites/ca.computational-mathematics/files/uploads/files/shirly_project.pdf

  23. Bengio, Y., LeCun, Y.: Scaling learning algorithms towards AI. http://cseweb.ucsd.edu/~gary/cs200/s12/bengio-lecun-07.pdf

  24. Bengio, Y.: Learning deep architecture for AI. http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf

  25. Cho, Y.: Kernel methods for deep learning. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.387.4491&rep=rep1&type=pdf

  26. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech and time-series. http://yann.lecun.com/exdb/publis/pdf/lecun-bengio-95a.pdf

  27. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising auto-encoders: learning useful representations in a deep network using local denoising criteria. http://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf

  28. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep-belief nets. https://www.cs.toronto.edu/~hinton/nipstutorial/nipstut3.pdf

  29. Cho, Y., Saul, K.: Large margin classification in infinite neural networks. http://cseweb.ucsd.edu/~yoc002/paper/neco_arccos.pdf

  30. Bouvrie, J., Rosasco, L., Poggio, T.: On invariance in hierarchical models. http://papers.nips.cc/paper/3732-on-invariance-in-hierarchical-models.pdf

  31. Bo, L., Ren, X., Fox, D.: Kernel descriptors for visual recognition. http://www.cs.washington.edu/robotics/postscripts/kdes-nips-10.pdf

  32. Bo, L., Lai, K., Ren, X., Fox, D.: Object recognition with hierarchical kernel descriptors. http://www.cs.washington.edu/robotics/postscripts/hkdes-cvpr-11.pdf

  33. Mairal, J., Koniusz, P., Harchaoui, Z., Schmid, C.: Convolutional kernel networks. http://arxiv.org/pdf/1406.3332v2.pdf

  34. Zhuang, J., Tsang, I.W., Hoi, S.C.H.: Two-layer multiple kernel learning. http://jmlr.csail.mit.edu/proceedings/papers/v15/zhuang11a/zhuang11a.pdf, http://www.di.ens.fr/~fbach/skm_icml.pdf

  35. Huang, P.-S., Avron, H., Sainath, T.N., Sindhvani, V., Ramabhadran, B.: Kernel methods match deep neural networks on TIMIT. http://www.ifp.illinois.edu/~huang146/papers/Kernel_DNN_ICASSP2014.pdf

  36. Jose, C., Goyal, P., Aggrwal, P., Varma, M.: Local deep kernel learning for efficient non-linear SVM prediction. http://research.microsoft.com/en-us/um/people/manik/pubs%5Cjose13.pdf

  37. Yger, F., Berar, M., Gasso, G., Rakotomamonjy, A.: A supervised strategy for deep kernel machine. https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2011-21.pdf

  38. Schölkopf, B., Smola, A., Müller, K.-R.: Kernel principal component analysis. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997). doi:10.1007/BFb0020217. http://www.ics.uci.edu/~welling/classnotes/papers_class/Kernel-PCA.pdf

    Chapter  Google Scholar 

  39. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering analysis and an algorithm. http://ai.stanford.edu/~ang/papers/nips01-spectral.pdf

  40. Welling, M.: Kernel canonical correlation analysis. http://www.ics.uci.edu/~welling/classnotes/papers_class/kCCA.pdf

  41. Wiering, M.A., Schutten, M., Millea, A., Meijster, A., Schomaker, L.R.B.: Deep support vector machines for regression problems. http://www.ai.rug.nl/~mwiering/GROUP/ARTICLES/DSVM_extended_abstract.pdf

  42. Takeda, H., Farsiu, S., Milanfar, P.: Kernel regression for image processing and reconstruction. http://people.duke.edu/~sf59/KernelRegression_Final.pdf

  43. Unsupervised kernel regression for non-linear dimensionality reduction. http://www.iro.umontreal.ca/~memisevr/pubs/ukr.pdf

  44. Memisevic, R.: Unsupervised kernel dimension reduction. http://www.cs.berkeley.edu/~jordan/papers/wang-sha-jordan-nips11.pdf

  45. http://deeplearning.net/datasets/

  46. https://archive.ics.uci.edu/ml/datasets.html, https://physionet.org/physiobank/database/#multi

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mashail Alsalamah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Alsalamah, M., Amin, S. (2017). Multilayer Radial Basis Function Kernel Machine. In: Perego, P., Andreoni, G., Rizzo, G. (eds) Wireless Mobile Communication and Healthcare. MobiHealth 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-319-58877-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58877-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58876-6

  • Online ISBN: 978-3-319-58877-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics