Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 239 Accesses

Abstract

In this chapter a detailed overview of the first Run-2 mono-jet analysis based on data collected during the first year of ATLAS at \(\sqrt{s}=13~\text {TeV}\) is provided (consult also Ref. (Aaboud et al., ATLAS Collaboration, Phys Rev D 94(3):032005, 2016, [1])). The selection criteria, the fitting strategy and the background estimations are addressed as well as the improvements and innovations introduced, which led to a significant improvement in sensitivity with respect to the Run-1 analysis. Finally the systematic uncertainties implemented in a global simultaneous fit are described and the results with the interpretations in the context of DM production, SUSY compressed scenarios and ADD model are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The ME matching scale is the scale used in the calculations which take into account the overlap between jets from ME and PS.

  2. 2.

    In Eq. (7.5) the source of background \({\text {BG}}_j\) is assumed to have a contribution in \({\text {CR}}_j\) much greater than the one in \({\text {SR}}_k\) (\(N_{{\text {BG}}_j}^{\text {CR}_j} \gg N_{\text {BG}_j}^{\text {SR}_k}\)) and in the eventual other regions.

  3. 3.

    Out-of-time jets refers to jets occurring before or after the triggered collision event.

  4. 4.

    \(\mu _R\) varies the scale for the running strong coupling constant for the underlying hard process.

  5. 5.

    \(\mu _F\) varies the scale used for the PDFs.

  6. 6.

    \(\mu _{QSF}\) varies the scale used for the resummation of soft gluon emission.

References

  1. M. Aaboud, et al., ATLAS Collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in \(pp\) collisions at \(\sqrt{s}=13\) TeV using the ATLAS detector. Phys. Rev. D 94(3), 032005 (2016), arXiv:1604.07773 [hep-ex]

  2. T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert, J. Winter, Event generation with SHERPA 1.1. JHEP 0902, 007 (2009), arXiv:0811.4622 [hep-ph]

  3. url: http://powhegbox.mib.infn.it

  4. S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method. JHEP 0711, 070 (2007), arXiv:0709.2092 [hep-ph]

  5. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 1407, 079 (2014), arXiv:1405.0301 [hep-ph]

  6. H.L. Lai, M. Guzzi, J. Huston, Z. Li, P.M. Nadolsky, J. Pumplin, C.-P. Yuan, New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010), arXiv:1007.2241 [hep-ph]

  7. T. Gleisberg, S. Hoeche, Comix, a new matrix element generator. JHEP 0812, 039 (2008), arXiv:0808.3674 [hep-ph]

  8. F. Cascioli, P. Maierhofer, S. Pozzorini, Scattering amplitudes with open loops. Phys. Rev. Lett. 108, 111601 (2012), arXiv:1111.5206 [hep-ph]

  9. S. Schumann, F. Krauss, A Parton shower algorithm based on Catani-Seymour dipole factorisation. JHEP 0803, 038 (2008), arXiv:0709.1027 [hep-ph]

  10. S. Hoeche, F. Krauss, M. Schonherr, F. Siegert, QCD matrix elements + parton showers: the NLO case. JHEP 1304, 027 (2013), arXiv:1207.5030 [hep-ph]

  11. S. Catani, L. Cieri, G. Ferrera, D. de Florian, M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO. Phys. Rev. Lett. 103, 082001 (2009), arXiv:0903.2120 [hep-ph]

  12. S. Catani, M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC. Phys. Rev. Lett. 98, 222002 (2007), arXiv:hep-ph/0703012

  13. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189 (2009), arXiv:0901.0002 [hep-ph]

  14. S. Frixione, P. Nason, G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction. JHEP 0709, 126 (2007), arXiv:0707.3088 [hep-ph]

  15. T. Sjostrand, S. Mrenna P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 0605, 026 (2006), arXiv:hep-ph/0603175

  16. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky, W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis. JHEP 0207, 012 (2002), arXiv:hep-ph/0201195

  17. P.Z. Skands, Tuning Monte Carlo generators: the Perugia Tunes. Phys. Rev. D 82, 074018 (2010), arXiv:1005.3457 [hep-ph]

  18. D.J. Lange, The EvtGen particle decay simulation package. Nucl. Instrum. Meth. A 462, 152 (2001)

    Article  ADS  Google Scholar 

  19. J.M. Campbell, R.K. Ellis, C. Williams, Vector boson pair production at the LHC. JHEP 1107, 018 (2011), arXiv:1105.0020 [hep-ph]

  20. R.D. Ball et al., Parton distributions with LHC data. Nucl. Phys. B 867, 244 (2013), arXiv:1207.1303 [hep-ph]

  21. ATLAS Collaboration, ATLAS Run 1 Pythia8 tunes, ATL-PHYS-PUB-2014-021, http://cds.cern.ch/record/1966419

  22. L. Lonnblad, S. Prestel, Matching tree-level matrix elements with interleaved showers. JHEP 1203, 019 (2012), arXiv:1109.4829 [hep-ph]

  23. W. Beenakker, M. Kramer, T. Plehn, M. Spira, P.M. Zerwas, Stop production at hadron colliders. Nucl. Phys. B 515, 3 (1998)

    Article  ADS  Google Scholar 

  24. W. Beenakker, S. Brensing, M. Kramer, A. Kulesza, E. Laenen, I. Niessen, Supersymmetric top and bottom squark production at hadron colliders. JHEP 1008, 098 (2010), arXiv:1006.4771 [hep-ph]

  25. W. Beenakker, S. Brensing, M. n. Kramer, A. Kulesza, E. Laenen, L. Motyka, I. Niessen, Squark and gluino hadroproduction. Int. J. Mod. Phys. A 26, 2637 (2011), arXiv:1105.1110 [hep-ph]

  26. C. Borschensky, M. Krämer, A. Kulesza, M. Mangano, S. Padhi, T. Plehn, X. Portell, Squark and gluino production cross sections in \(pp\) collisions at \(\sqrt{s}\) = 13, 14, 33 and 100 TeV. Eur. Phys. J. C 74(12), 3174 (2014), arXiv:1407.5066 [hep-ph]

  27. S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP 1006, 043 (2010), arXiv:1002.2581 [hep-ph]

  28. P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms. JHEP 0411, 040 (2004), arXiv:hep-ph/0409146

  29. U. Haisch, F. Kahlhoefer, E. Re, QCD effects in mono-jet searches for dark matter. JHEP 1312, 007 (2013), arXiv:1310.4491 [hep-ph]

  30. R.D. Ball et al., [NNPDF Collaboration], Parton distributions for the LHC Run II. JHEP 1504, 040 (2015), arXiv:1410.8849 [hep-ph]

  31. G. Aad et al., ATLAS Collaboration, The ATLAS simulation infrastructure. Eur. Phys. J. C 70, 823 (2010), arXiv:1005.4568 [physics.ins-det]

  32. S. Agostinelli et al., [GEANT4 Collaboration], GEANT4: a simulation toolkit. Nucl. Instrum. Meth. A 506, 250 (2003)

    Google Scholar 

  33. G. Aad et al., ATLAS Collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb\(^{-1}\) of \(\sqrt{s}=7\) TeV proton-proton collision data. Phys. Rev. D 87(1), 012008 (2013), arXiv:1208.0949 [hep-ex]

  34. G. Aad et al., ATLAS Collaboration, Characterisation and mitigation of beam-induced backgrounds observed in the ATLAS detector during the 2011 proton-proton run. JINST 8, P07004 (2013), arXiv:1303.0223 [hep-ex]

  35. G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 71, 1554 (2011); Erratum: [Eur. Phys. J. C 73, 2501 (2013)], arXiv:1007.1727 [physics.data-an]]

  36. G. Aad et al., ATLAS Collaboration, Improved luminosity determination in \(pp\) collisions at \(\sqrt{s} = 7\,{\rm {TeV}}\) using the ATLAS detector at the LHC. Eur. Phys. J. C 73(8), 2518 (2013), arXiv:1302.4393 [hep-ex]

  37. ATLAS Collaboration, Expected performance of missing transverse momentum reconstruction for the ATLAS detector at \(\sqrt{s} = 13\,{\rm {TeV}}\), ATL-PHYS-PUB-2015-023, https://cds.cern.ch/record/2037700

  38. ATLAS Collaboration, Simulation of top quark production for the ATLAS experiment at \(\sqrt{s} = 13\,{\rm {TeV}}\), ATL-PHYS-PUB-2016-004, https://cds.cern.ch/record/2120417?ln=en

  39. ATLAS Collaboration, Multi-boson simulation for 13 TeV ATLAS analyses, ATL-PHYS-PUB-2016-002, https://cds.cern.ch/record/2119986

  40. J.H. Kuhn, A. Kulesza, S. Pozzorini, M. Schulze, Electroweak corrections to hadronic production of W bosons at large transverse momenta. Nucl. Phys. B 797, 27 (2008), arXiv:0708.0476 [hep-ph]

  41. M. Schönherr, S. Kallweit, J.M. Lindert, S. Pozzorini, P. Maierhöfer, NLO QCD+EW for V+jets, arXiv:1609.01445 [hep-ph]

  42. M. Botje et al., The PDF4LHC working group interim recommendations, arXiv:1101.0538 [hep-ph]

  43. L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75(5), 204 (2015), arXiv:1412.3989 [hep-ph]

  44. A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. RĂ¼fenacht, M. Schönherr, G. Watt, LHAPDF6: parton density access in the LHC precision era. Eur. Phys. J. C 75, 132 (2015), arXiv:1412.7420 [hep-ph]

  45. A.L. Read, Presentation of search results: the CL(s) technique. J. Phys. G 28, 2693 (2002)

    Article  ADS  Google Scholar 

  46. ATLAS Collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in \(pp\) collisions at \(\sqrt{s}=8\,{\rm {TeV}}\) with the ATLAS detector. Eur. Phys. J. C 75, 7, 299 (2015); Erratum: [Eur. Phys. J. C 75(9), 408 (2015)], arXiv:1502.01518 [hep-ex]

  47. G. Aad et al., ATLAS Collaboration, Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector. JHEP 1304, 075 (2013), arXiv:1210.4491 [hep-ex]

  48. G. Aad et al., ATLAS Collaboration, Search for pair-produced third-generation squarks decaying via charm quarks or in compressed supersymmetric scenarios in \(pp\) collisions at \(\sqrt{s}=8~\)TeV with the ATLAS detector. Phys. Rev. D 90(5), 052008 (2014), arXiv:1407.0608 [hep-ex]

  49. T. Aaltonen et al., [CDF Collaboration], Search for scalar top quark production in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\) TeV. JHEP 1210, 158 (2012), arXiv:1203.4171 [hep-ex]

  50. V.M. Abazov et al., [D0 Collaboration], Search for scalar top quarks in the acoplanar charm jets and missing transverse energy final state in \(p \bar{p}\) collisions at \(\sqrt{s}\) = 1.96-TeV. Phys. Lett. B 665, 1 (2008), arXiv:0803.2263 [hep-ex]

  51. M. Backović, A. Martini, O. Mattelaer, K. Kong, G. Mohlabeng, Direct detection of dark matter with MadDM v.2.0. Phys. Dark Univ. 9–10, 37, arXiv:1505.04190 [hep-ph]

  52. F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz, S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models. JHEP 1602, 016 (2016), arXiv:1510.02110 [hep-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano Gustavino .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gustavino, G. (2017). The Mono-jet Analysis. In: Search for New Physics in Mono-jet Final States in pp Collisions . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-58871-1_7

Download citation

Publish with us

Policies and ethics