Advertisement

The Mono-jet Analysis

  • Giuliano GustavinoEmail author
Chapter
  • 197 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter a detailed overview of the first Run-2 mono-jet analysis based on data collected during the first year of ATLAS at \(\sqrt{s}=13~\text {TeV}\) is provided (consult also Ref. (Aaboud et al., ATLAS Collaboration, Phys Rev D 94(3):032005, 2016, [1])). The selection criteria, the fitting strategy and the background estimations are addressed as well as the improvements and innovations introduced, which led to a significant improvement in sensitivity with respect to the Run-1 analysis. Finally the systematic uncertainties implemented in a global simultaneous fit are described and the results with the interpretations in the context of DM production, SUSY compressed scenarios and ADD model are presented.

References

  1. 1.
    M. Aaboud, et al., ATLAS Collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in \(pp\) collisions at \(\sqrt{s}=13\) TeV using the ATLAS detector. Phys. Rev. D 94(3), 032005 (2016), arXiv:1604.07773 [hep-ex]
  2. 2.
    T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert, J. Winter, Event generation with SHERPA 1.1. JHEP 0902, 007 (2009), arXiv:0811.4622 [hep-ph]
  3. 3.
  4. 4.
    S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method. JHEP 0711, 070 (2007), arXiv:0709.2092 [hep-ph]
  5. 5.
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 1407, 079 (2014), arXiv:1405.0301 [hep-ph]
  6. 6.
    H.L. Lai, M. Guzzi, J. Huston, Z. Li, P.M. Nadolsky, J. Pumplin, C.-P. Yuan, New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010), arXiv:1007.2241 [hep-ph]
  7. 7.
    T. Gleisberg, S. Hoeche, Comix, a new matrix element generator. JHEP 0812, 039 (2008), arXiv:0808.3674 [hep-ph]
  8. 8.
    F. Cascioli, P. Maierhofer, S. Pozzorini, Scattering amplitudes with open loops. Phys. Rev. Lett. 108, 111601 (2012), arXiv:1111.5206 [hep-ph]
  9. 9.
    S. Schumann, F. Krauss, A Parton shower algorithm based on Catani-Seymour dipole factorisation. JHEP 0803, 038 (2008), arXiv:0709.1027 [hep-ph]
  10. 10.
    S. Hoeche, F. Krauss, M. Schonherr, F. Siegert, QCD matrix elements + parton showers: the NLO case. JHEP 1304, 027 (2013), arXiv:1207.5030 [hep-ph]
  11. 11.
    S. Catani, L. Cieri, G. Ferrera, D. de Florian, M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO. Phys. Rev. Lett. 103, 082001 (2009), arXiv:0903.2120 [hep-ph]
  12. 12.
    S. Catani, M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC. Phys. Rev. Lett. 98, 222002 (2007), arXiv:hep-ph/0703012
  13. 13.
    A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189 (2009), arXiv:0901.0002 [hep-ph]
  14. 14.
    S. Frixione, P. Nason, G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction. JHEP 0709, 126 (2007), arXiv:0707.3088 [hep-ph]
  15. 15.
    T. Sjostrand, S. Mrenna P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 0605, 026 (2006), arXiv:hep-ph/0603175
  16. 16.
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky, W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis. JHEP 0207, 012 (2002), arXiv:hep-ph/0201195
  17. 17.
    P.Z. Skands, Tuning Monte Carlo generators: the Perugia Tunes. Phys. Rev. D 82, 074018 (2010), arXiv:1005.3457 [hep-ph]
  18. 18.
    D.J. Lange, The EvtGen particle decay simulation package. Nucl. Instrum. Meth. A 462, 152 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    J.M. Campbell, R.K. Ellis, C. Williams, Vector boson pair production at the LHC. JHEP 1107, 018 (2011), arXiv:1105.0020 [hep-ph]
  20. 20.
    R.D. Ball et al., Parton distributions with LHC data. Nucl. Phys. B 867, 244 (2013), arXiv:1207.1303 [hep-ph]
  21. 21.
    ATLAS Collaboration, ATLAS Run 1 Pythia8 tunes, ATL-PHYS-PUB-2014-021, http://cds.cern.ch/record/1966419
  22. 22.
    L. Lonnblad, S. Prestel, Matching tree-level matrix elements with interleaved showers. JHEP 1203, 019 (2012), arXiv:1109.4829 [hep-ph]
  23. 23.
    W. Beenakker, M. Kramer, T. Plehn, M. Spira, P.M. Zerwas, Stop production at hadron colliders. Nucl. Phys. B 515, 3 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    W. Beenakker, S. Brensing, M. Kramer, A. Kulesza, E. Laenen, I. Niessen, Supersymmetric top and bottom squark production at hadron colliders. JHEP 1008, 098 (2010), arXiv:1006.4771 [hep-ph]
  25. 25.
    W. Beenakker, S. Brensing, M. n. Kramer, A. Kulesza, E. Laenen, L. Motyka, I. Niessen, Squark and gluino hadroproduction. Int. J. Mod. Phys. A 26, 2637 (2011), arXiv:1105.1110 [hep-ph]
  26. 26.
    C. Borschensky, M. Krämer, A. Kulesza, M. Mangano, S. Padhi, T. Plehn, X. Portell, Squark and gluino production cross sections in \(pp\) collisions at \(\sqrt{s}\) = 13, 14, 33 and 100 TeV. Eur. Phys. J. C 74(12), 3174 (2014), arXiv:1407.5066 [hep-ph]
  27. 27.
    S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP 1006, 043 (2010), arXiv:1002.2581 [hep-ph]
  28. 28.
    P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms. JHEP 0411, 040 (2004), arXiv:hep-ph/0409146
  29. 29.
    U. Haisch, F. Kahlhoefer, E. Re, QCD effects in mono-jet searches for dark matter. JHEP 1312, 007 (2013), arXiv:1310.4491 [hep-ph]
  30. 30.
    R.D. Ball et al., [NNPDF Collaboration], Parton distributions for the LHC Run II. JHEP 1504, 040 (2015), arXiv:1410.8849 [hep-ph]
  31. 31.
    G. Aad et al., ATLAS Collaboration, The ATLAS simulation infrastructure. Eur. Phys. J. C 70, 823 (2010), arXiv:1005.4568 [physics.ins-det]
  32. 32.
    S. Agostinelli et al., [GEANT4 Collaboration], GEANT4: a simulation toolkit. Nucl. Instrum. Meth. A 506, 250 (2003)Google Scholar
  33. 33.
    G. Aad et al., ATLAS Collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb\(^{-1}\) of \(\sqrt{s}=7\) TeV proton-proton collision data. Phys. Rev. D 87(1), 012008 (2013), arXiv:1208.0949 [hep-ex]
  34. 34.
    G. Aad et al., ATLAS Collaboration, Characterisation and mitigation of beam-induced backgrounds observed in the ATLAS detector during the 2011 proton-proton run. JINST 8, P07004 (2013), arXiv:1303.0223 [hep-ex]
  35. 35.
    G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 71, 1554 (2011); Erratum: [Eur. Phys. J. C 73, 2501 (2013)], arXiv:1007.1727 [physics.data-an]]
  36. 36.
    G. Aad et al., ATLAS Collaboration, Improved luminosity determination in \(pp\) collisions at \(\sqrt{s} = 7\,{\rm {TeV}}\) using the ATLAS detector at the LHC. Eur. Phys. J. C 73(8), 2518 (2013), arXiv:1302.4393 [hep-ex]
  37. 37.
    ATLAS Collaboration, Expected performance of missing transverse momentum reconstruction for the ATLAS detector at \(\sqrt{s} = 13\,{\rm {TeV}}\), ATL-PHYS-PUB-2015-023, https://cds.cern.ch/record/2037700
  38. 38.
    ATLAS Collaboration, Simulation of top quark production for the ATLAS experiment at \(\sqrt{s} = 13\,{\rm {TeV}}\), ATL-PHYS-PUB-2016-004, https://cds.cern.ch/record/2120417?ln=en
  39. 39.
    ATLAS Collaboration, Multi-boson simulation for 13 TeV ATLAS analyses, ATL-PHYS-PUB-2016-002, https://cds.cern.ch/record/2119986
  40. 40.
    J.H. Kuhn, A. Kulesza, S. Pozzorini, M. Schulze, Electroweak corrections to hadronic production of W bosons at large transverse momenta. Nucl. Phys. B 797, 27 (2008), arXiv:0708.0476 [hep-ph]
  41. 41.
    M. Schönherr, S. Kallweit, J.M. Lindert, S. Pozzorini, P. Maierhöfer, NLO QCD+EW for V+jets, arXiv:1609.01445 [hep-ph]
  42. 42.
    M. Botje et al., The PDF4LHC working group interim recommendations, arXiv:1101.0538 [hep-ph]
  43. 43.
    L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75(5), 204 (2015), arXiv:1412.3989 [hep-ph]
  44. 44.
    A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht, M. Schönherr, G. Watt, LHAPDF6: parton density access in the LHC precision era. Eur. Phys. J. C 75, 132 (2015), arXiv:1412.7420 [hep-ph]
  45. 45.
    A.L. Read, Presentation of search results: the CL(s) technique. J. Phys. G 28, 2693 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    ATLAS Collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in \(pp\) collisions at \(\sqrt{s}=8\,{\rm {TeV}}\) with the ATLAS detector. Eur. Phys. J. C 75, 7, 299 (2015); Erratum: [Eur. Phys. J. C 75(9), 408 (2015)], arXiv:1502.01518 [hep-ex]
  47. 47.
    G. Aad et al., ATLAS Collaboration, Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector. JHEP 1304, 075 (2013), arXiv:1210.4491 [hep-ex]
  48. 48.
    G. Aad et al., ATLAS Collaboration, Search for pair-produced third-generation squarks decaying via charm quarks or in compressed supersymmetric scenarios in \(pp\) collisions at \(\sqrt{s}=8~\)TeV with the ATLAS detector. Phys. Rev. D 90(5), 052008 (2014), arXiv:1407.0608 [hep-ex]
  49. 49.
    T. Aaltonen et al., [CDF Collaboration], Search for scalar top quark production in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\) TeV. JHEP 1210, 158 (2012), arXiv:1203.4171 [hep-ex]
  50. 50.
    V.M. Abazov et al., [D0 Collaboration], Search for scalar top quarks in the acoplanar charm jets and missing transverse energy final state in \(p \bar{p}\) collisions at \(\sqrt{s}\) = 1.96-TeV. Phys. Lett. B 665, 1 (2008), arXiv:0803.2263 [hep-ex]
  51. 51.
    M. Backović, A. Martini, O. Mattelaer, K. Kong, G. Mohlabeng, Direct detection of dark matter with MadDM v.2.0. Phys. Dark Univ. 910, 37, arXiv:1505.04190 [hep-ph]
  52. 52.
    F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz, S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models. JHEP 1602, 016 (2016), arXiv:1510.02110 [hep-ph]

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Sapienza University of RomeRomeItaly

Personalised recommendations